K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2020

\(\Delta=\left(m+3\right)^2-4\left(m+2\right)=m^2+2m+1=\left(m+1\right)^2\ge0,\forall m\)

=> Phương trình có hai nghiệm: 

\(\orbr{\begin{cases}x_1=\frac{m+3-\left(m+1\right)}{2}=1\\x_2=\frac{m+3+m+1}{2}=m+2\end{cases}}\)

+) TH1: \(x_1=2x_2\) khi đó: \(1=2m+4\Leftrightarrow m=-\frac{3}{2}\)

+) TH2: \(x_2=2x_1\)khi đó: m + 2 = 2 <=> m = 0 

Vậy m = -3/2 hoặc m = 0.

25 tháng 5 2020

cho đường tròn tâm O bán kính r,điểm A cố định nằm ngoài đường tròn.kẻ 2 tiếp tuyến AM,AN.Đường thẳng D đi qua A cắt đường tròn O tại B,C với AB<AC.Chứng minh 5 điểm A,M,N,O,I thuộc đường tròn

chỉ cần hình thui

27 tháng 5 2020

\(x^2-\left(m+3\right)x+m+2=0\)

Xét \(\Delta=\left(m+3\right)^2-4\left(m+2\right)=m^2+6m+9-4m-8=\left(m-1\right)^2\ge0\)

Vậy phương trình luôn có nghiệm với mọi m

Gọi 2 nghiệm của phương trình lần lượt là x1;x2

Theo Viete ta dễ dàng có ngay:

\(x_1+x_2=m+3;x_1x_2=m+2\)

Không mất tính tổng quát giả sử rằng \(x_1=2x_2\)

Khi đó \(2x_2+x_2=m+3\Rightarrow x_2=\frac{m+3}{3};2x_2\cdot x_2=m+2\)

\(2x_2^2=m+2\Leftrightarrow2\left(\frac{m+3}{3}\right)^2=m+2\)

Giải được phương trình này là ra giá trị của m nhé !

26 tháng 5 2020

a)

+) Với m = 0  thay vào phương trình ta có: 1 = 0 => loại 

+) Với m khác 0 

\(\Delta'=m^2-m=m\left(m-1\right)\)

Để phương trình có nghiệm điều kiện là: \(m\left(m-1\right)\ge0\)

TH1: m \(\ge\)0 và m - 1 \(\ge\)

<=> m \(\ge\) 0 và m \(\ge\)

<=> m \(\ge\)

 TH2: m \(\le\) 0 và m - 1  \(\le\)

<=> m \(\le\)0 và m \(\le\)1

<=> m \(\le\)

Đối chiếu điều kiên m khác 0

Vậy m < 0 hoặc m \(\ge\)1

+) Tính nghiệm của phương trình theo m. Tự làm áp dụng công thức

b) Gọi \(x_1;x_2\) là hai nghiệm của phương trình 

Theo định lí vi ét ta có: 

\(x_1x_2=\frac{1}{m};x_1+x_2=\frac{2m}{m}=2\)

Không mất tính tổng quát ta g/s: \(x_1=2x_2\)

=> \(3x_2=2\Leftrightarrow x_2=\frac{2}{3}\)=> \(x_1=\frac{4}{3}\)

Ta có: \(\frac{4}{3}.\frac{2}{3}=\frac{1}{m}\)

<=> \(m=\frac{9}{8}\)( thỏa mãn a )

Thử lại thỏa mãn 

Vậy m = 9/8

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

26 tháng 5 2020

a) Xét \(\Delta'=\left(m-1\right)^2-\left(m^2-3\right)=-2m+4\)

phương trình có hai nghiệm <=> \(\Delta'\ge0\Leftrightarrow-2m+4\ge0\Leftrightarrow m\le2\)(@@) 

b) Gọi \(x_1;x_2\) là hai nghiệm của phương trình 

áp dụng định lí viet ta có: \(\hept{\begin{cases}x_1x_2=m^2-3\\x_1+x_2=2\left(m-1\right)\end{cases}}\)

Không mất tính tổng quát: g/s: \(x_1=3x_2\)

=> \(4x_2=2\left(m-1\right)\Leftrightarrow x_2=\frac{m-1}{2}\)

=> \(x_1=\frac{3\left(m-1\right)}{2}\)

mà \(x_1x_2=m^2-3\)

=> \(\frac{3}{4}\left(m-1\right)^2=m^2-3\)

<=> \(3\left(m^2-2m+1\right)=4m^2-12\)

<=> \(\orbr{\begin{cases}m=-3+2\sqrt{6}\\m=-3-2\sqrt{6}\end{cases}}\) thỏa mãn 

Vậy ....

a) Xét \(\Delta=\left(m+1\right)^2-2m+3=m^2+4>0,\forall m\)

Vậy PT luôn có 2 nghiệm phân biệt.

b) \(f\left(x\right)=x^2-\left(m+1\right)x+2m-3=0\)có nghiệm \(x=3\)khi và chỉ khi

\(f\left(3\right)=0\Leftrightarrow3^2-\left(m+1\right).3+2m-3=0\Leftrightarrow3-m=0\Leftrightarrow m=3\)