K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2019

Bài 2. \(x^2-mx+m-1=0\)(1)

a) Phương trình (1) có: \(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0,\forall m\)

Suy ra phương trình luôn có nghiệm với mọi m

b) Áp dụng định lí Vi ét ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=m-1\end{cases}}\)

Ta có: \(x_1^2-x_2^2+x_1+x_2=0\Leftrightarrow\left(x_1+x_2\right)\left(x_1-x_2\right)+\left(x_1+x_2\right)=0\Leftrightarrow\left(x_1+x_2\right)\left(x_1-x_2\right)=0\)

<=>\(\orbr{\begin{cases}x_1+x_2=0\\x_1-x_2+1=0\end{cases}}\)

+) Với \(x_1+x_2=0\Leftrightarrow m=0\)(tm)

+) Với \(x_1-x_2+1=0\Leftrightarrow x_1=-1+x_2\)

Ta có \(x_1+x_2=m\Leftrightarrow-1+x_2+x_2=m\Leftrightarrow x_2=\frac{m+1}{2}\)

=> \(x_1=-1+x_2=-1+\frac{m+1}{2}=\frac{m-1}{2}\)

ta lại có: \(x_1.x_2=m-1\Leftrightarrow\frac{m+1}{2}.\frac{m-1}{2}=m-1\Leftrightarrow\orbr{\begin{cases}m-1=0\\\frac{m+1}{4}=1\end{cases}\Leftrightarrow\orbr{\begin{cases}m=1\\m=3\end{cases}}}\)(TM)

Vậy 

1 tháng 4 2019

Sửa lại :

2b) 

\(x_1^2-x_2^2+x_1-x_2=0\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2+1\right)=0\Leftrightarrow\orbr{\begin{cases}x_1-x_2=0\\x_1+x_2+1=0\end{cases}}\)

Với \(x_1-x_2=0\Leftrightarrow x_1=x_2\)

Ta có:\(x_1+x_2=m\Leftrightarrow2x_1=m\Leftrightarrow x_1=x_2=\frac{m}{2}\)

\(x_1.x_2=m-1\Leftrightarrow\frac{m}{2}.\frac{m}{2}=m-1\Leftrightarrow m^2=4m-4\Leftrightarrow\left(m-2\right)^2=0\Leftrightarrow m=2\)

+) Với \(x_1+x_2+1=0\Leftrightarrow m+1=0\Leftrightarrow m=-1\)

Vậy m=-1 hoặc m=2

28 tháng 4 2015

a)Ta có: \(\Delta\)= m2 - 4(m - 1) = m2 - 4m + 4 = (m - 2)\(\geq\)0 với mọi m

Vậy: PT có 2 nghiệm x1, x2 với mọi m

b)Theo Vi-et: x1 + x= m và x1x= m - 1

Do đó: A = x1+ x2- 6x1x= (x+ x2)- 8x1x= m2 - 8(m - 1) = m2 - 8m + 8 = ( m2 - 8m + 16) - 8 = (m - 4)2 - 8 \(\geq\)- 8 với mọi m

Vậy: GTNN của A là -8 <=> m = 4

NV
20 tháng 6 2020

\(\Delta=\left(2m-1\right)^2-4\left(m^2-m\right)=1>0\)

Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=\frac{2m-1-1}{2}=m-1\\x_2=\frac{2m-1+1}{2}=m\end{matrix}\right.\)

\(x_1^2+mx_2-5=0\)

\(\Leftrightarrow\left(m-1\right)^2+m^2-5=0\)

\(\Leftrightarrow2m^2-2m-4=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=2\end{matrix}\right.\)

Bài 1: Cho phương trình x2 - mx + m - 2 = 0 (m là tham số) a) Chứng minh phương trình có nghiệm với mọi m b) Tìm m để phương trình có nghiệm x1; x2 thỏa mãn: x1 - x2 = \(2\sqrt{5}\) Bài 2: Cho phương trình x2 - 5x + 3m + 1 = 0 (m là tham số). Tìm tất cả giá trị của m để phương trình trên có 2 nghiệm phân biệt x1; x2 thỏa mãn |x12 - x22| = 15 Bài 3: Cho phương trình 4x2 +2(m + 1)x + m = 0 (m là tham số) a) Chứng minh...
Đọc tiếp

Bài 1: Cho phương trình x2 - mx + m - 2 = 0 (m là tham số)

a) Chứng minh phương trình có nghiệm với mọi m

b) Tìm m để phương trình có nghiệm x1; x2 thỏa mãn: x1 - x2 = \(2\sqrt{5}\)

Bài 2: Cho phương trình x2 - 5x + 3m + 1 = 0 (m là tham số). Tìm tất cả giá trị của m để phương trình trên có 2 nghiệm phân biệt x1; x2 thỏa mãn |x12 - x22| = 15

Bài 3: Cho phương trình 4x2 +2(m + 1)x + m = 0 (m là tham số)

a) Chứng minh phương trình có nghiệm với mọi m

b) Tìm m để phương trình đã cho có 2 nghiệm cũng là nghiệm của phương trình mx2 + 2(m + 1)x + 4 = 0

Bài 4: Cho phương trình 2x2 +2mx + m2 - 2 = 0 (m là tham số). Tìm m để phương trình có 2 nghiệm x1; x2 thỏa mãn |2x1x2 + x1+ x2 - 4| = 6

Bài 5: Cho phương trình 5x2 + mx - 28 = 0 (m là tham số). Tìm m để phương trình có 2 nghiệm x1; x2 thỏa mãn điều kiện: 5x1 + 2x2 = 1

=>>>> Giải hêt giúp mình nha mọi người :<< Cần gấp vào cuối tuần :((

6
NV
18 tháng 9 2019

Bài 1:

\(\Delta=m^2-4\left(m-2\right)=m^2-4m+8=\left(m-2\right)^2+4>0\) \(\forall m\)

\(\Rightarrow\) Pt luôn có 2 nghiệm pb

Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=m\\x_1-x_2=2\sqrt{5}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{2\sqrt{5}+m}{2}\\x_2=\frac{m-2\sqrt{5}}{2}\end{matrix}\right.\)

\(\Rightarrow\left(\frac{m+2\sqrt{5}}{2}\right)\left(\frac{m-2\sqrt{5}}{2}\right)=m\)

\(\Leftrightarrow m^2-20=4m\)

\(\Leftrightarrow m^2-4m-20=0\Rightarrow m=2\pm2\sqrt{6}\)

NV
18 tháng 9 2019

Câu 2:

\(\Delta=25-4\left(3m+1\right)=21-12m>0\Rightarrow m< \frac{7}{4}\)

Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=3m+1\end{matrix}\right.\)

Theo HĐT \(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=21-12m\)

Thay vào bài toán:

\(\left|x_1^2-x_2^2\right|=15\)

\(\Leftrightarrow\left|\left(x_1-x_2\right)\left(x_1+x_2\right)\right|=15\)

\(\Leftrightarrow\left|x_1-x_2\right|=\frac{15}{5}=3\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=9\)

\(\Leftrightarrow21-12m=9\)

\(\Leftrightarrow12m=12\)

\(\Rightarrow m=1\)

30 tháng 5 2017

bài này hay đó bạn 

ta có: Sn+2= x1n+2+ x2n+2 = x1n+2+ x2n+2+ x1n+1x2+ x2n+1x1-  x1n+1x2- x2n+1x1

                                                       = ( x1n+1+ x2n+1)( x1+x2) - x1x2 ( x1n+x2n)

                                         = - b/aSn+1 - c/aSn       ( Viet )

Suy ra   aSn+2 +bSn+1+ cSn = -bSn+1 -cSn + bSn+1 +cSn = 0 (đpcm)