K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2020

ms học lớp 5 nên giải câu a )

\(-x^2+\left(2m-2\right)x-m^2+3m-3=0\)

thay \(m=2\)vào PT(1)

ta có \(-x^2+\left(2.2-2\right)x-2^2+3.2-3=0\)

   \(\Leftrightarrow-x^2+2x-4+6-3=0\)

\(\Leftrightarrow-x^2+2x-4+3=0\)

\(\Leftrightarrow-x^2+2x-4=-3\)

\(\Leftrightarrow-x^2+2x=1\)

....

28 tháng 1 2016

a) thay m=2 vào pt, ta có : \(x^2+3x+2=0\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\Leftrightarrow x=-1orx=-2\)

b) \(\Delta=\left(2m-1\right)^2-4\left(2\left(m-1\right)\right)=4m^2-12m+9=\left(2m-3\right)^2\ge0\). vậy pt luôn có nghiệm với mọi m

c) theo hệ thức viet, ta có: x1+x2=-(2m-1)

                                           x1x2=2(m-1)

ta có: x1(x2-5)+x2(x1-5)=33

=>     2x1x2-5(x1+x2)=33

=>    4(m-1)+5(2m-1)=33

tới đây bạn tự giải nhé

7 tháng 6 2015

a) \(\Delta=4m^2-4\left(3m-4\right)=4m^2-12m+16=\left(2m-3\right)^2+7>0\)với mọi m=> pt (1) có nghiệm phân biệt với mọi m

b)áp dụng đ.lí Viét ta có: \(x_1+x_2=2m\)\(x_1.x_2=m^2+3m-4\)

\(x_1^2+x_2^2=\left(x1+x2\right)^2-2x1.x2=4m^2-2\left(m^2+3m-4\right)=4m^2-2m^2-6m+8\)

    \(=2\left(m^2+3m-4\right)=2\left[\left(m+\frac{3}{2}\right)^2-4-\frac{9}{4}\right]=2\left[\left(m+\frac{3}{2}\right)^2-\frac{25}{4}\right]\)

A đặt giá trị nhỏ nhất khi m = -3/2

Ta có phương trình x2-(2m+1)x+m2=0

Xét \(\Delta=\left(2m-1\right)^2-4m^2=-4m+1>0\)

\(\Rightarrow m< \frac{1}{4}\)

a, Khòng mất tính tổn quát giả sử \(0< x_1< x_2\)

Để pt có 2 nghiệm dương phân biệt thì : \(\hept{\begin{cases}\Delta>0\\S>0\\P>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m< \frac{1}{4}\\2m+1>0\\m>0\end{cases}\Leftrightarrow}0< m< \frac{1}{4}\)

b, Ta có\(x_1=\frac{2m+1-\sqrt{1-4m}}{2};x_2=\frac{2m+1+\sqrt{1-4m}}{2}\)

\(\Rightarrow\left(x_1-m\right)^2+x_2=3m\)

\(\Leftrightarrow\left(\frac{1-\sqrt{1-4m}}{2}\right)^2+\frac{2m+1+\sqrt{1-4m}}{2}=3m\)

Giải ra tìm được m :))))

16 tháng 2 2020

a. Thay \(m=-2\) vào pt đề cho ta được pt:

\(x^2-6x-7=0\left(2\right)\)

Lại có: \(a-b+c=1+6-7=0\) nên pt 2 có nghiệm là: \(x_1=1\)và \(x_2=7\)

b. Ta có: \(\Delta'=\left(-3\right)^2-1\left(2m-3\right)=9-2m+3=12-2m\)

Để pt 1 có 2 nghiệm \(x_1;x_2\Leftrightarrow12-2m\ge0\)

\(\Leftrightarrow m\le6\)

Theo hệ thức vi-ét ta được: \(\hept{\begin{cases}x_1+x_2=6\\x_1.x_2=2m-3\end{cases}}\left(3\right)\)

Theo đề bài ta có: \(x^2_1x_2+x_1x_2^2=24\)

\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)=24\left(4\right)\)

Thay \(\left(3\right)\)vào \(\left(4\right)\)ta được:

\(6\left(2m-3\right)=24\)

\(\Rightarrow2m-3=4\)

\(\Rightarrow2m=7\)

\(\Rightarrow m=\frac{7}{2}\left(tmđkxđ\right)\)

Vậy .............

16 tháng 2 2020

b, \(\Delta'=\left(-6\right)^2-1.\left(2m-3\right)=36-2m+3=39-2m\)

Để pt (1) có 2 nghiệm <=> \(\Delta'\ge0\Leftrightarrow39-2m\ge0\Leftrightarrow m\le\frac{39}{2}\)

Theo hệ thức vi-ét ta có: \(x_1+x_2=\frac{-\left(-6\right)}{1}=6;x_1x_2=\frac{2m-3}{1}=2m-3\)

Theo bài ra ta có: \(x_1^2x_2+x_1x_2^2=24\)

\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)=24\)

\(\Leftrightarrow\left(2m-3\right).6=24\Leftrightarrow2m-3=24\)

\(\Leftrightarrow2m=27\Leftrightarrow m=\frac{27}{2}\left(TM\right)\)

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0a) Giải phương trình với m = -2b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1c) Tìm các giá trị của m để phương trình trên có nghiệm kép2.Xác định m để mỗi cặp phương trình sau có nghiệm chunga) x2 + mx +2 = 0 và x2 +2x + m = 0b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 03. Cho phương trình (m+1)x2 +4mx +4m - 1 =0a) Giải phương trình với m...
Đọc tiếp

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0

a) Giải phương trình với m = -2

b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1

c) Tìm các giá trị của m để phương trình trên có nghiệm kép

2.Xác định m để mỗi cặp phương trình sau có nghiệm chung

a) x2 + mx +2 = 0 và x2 +2x + m = 0

b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 0

3. Cho phương trình (m+1)x2 +4mx +4m - 1 =0

a) Giải phương trình với m = - 2

b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt

c) Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện x1 = - 2x2

4. Cho phương trình x2 - 2(m+4)x +m2 -8 =0

a) Tìm m để biểu thức A= x12 + x22 - x1 - x2 đạt giá trị nhỏ nhất

b) Tìm m để biểu thức B= x1 + x2 -3x1x2 đạt giá trị lớn nhất

c) Tìm m để biểu thức C= x12 + x22 - x1x2 đạt giá trị lớn nhất

Mong mọi người giúp mình, mình thực sự rất cần. Cảm ơn trước ạ. Làm được bài nào thì cmt ngay giúp mình ạ.

1
18 tháng 2 2021

Bài 1 : a, Thay m = -2 vào phương trình ta được : 

\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)

Ta có : \(\Delta=64-60=4>0\)

Vậy phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)

b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)

\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)

\(1+2\left(m-2\right)+m^2-3m+5=0\)

\(6+2m-4+m^2-3m=0\)

\(2-m+m^2=0\)( giải delta nhé )

\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)

Vậy phương trình vô nghiệm 

c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )

24 tháng 4 2019

em chịu em lớp 5

29 tháng 6 2017

Để phương trình có 2 nghiệm \(x_1,x_2\)thì \(\Delta=4\left(m^2+2m+1\right)-4\left(2m+3\right)>0\Leftrightarrow4m^2-8>0\)

\(\Leftrightarrow m^2>2\Leftrightarrow\orbr{\begin{cases}m< -\sqrt{2}\\m>\sqrt{2}\end{cases}}\)

Theo hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=2.\left(m+1\right)\\x_1.x_2=2m+3\end{cases}}\)

Từ \(\left(x_1-x_2\right)^2=4\Leftrightarrow x_1^2-2x_1x_2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-4x_1.x_2=4\)

\(\Rightarrow4\left(m+1\right)^2-4\left(2m+3\right)=4\Leftrightarrow4m^2+8m+4-8m-12-4=0\)

\(\Leftrightarrow m^2=3\Leftrightarrow\orbr{\begin{cases}m=\sqrt{3}\\m=-\sqrt{3}\end{cases}}\)

Kết hợp ĐK ta thấy \(\orbr{\begin{cases}m=\sqrt{3}\\m=-\sqrt{3}\end{cases}}\)thỏa mãn yêu cầu bài toán 

29 tháng 6 2017

m=+-căn 3