K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2019

\(x^2-\left(2m+3\right)x+m^2+3m+2=0\left(1\right).\)

a, Với m = 1, \(\left(1\right)\Leftrightarrow x^2-7m+6=0\Leftrightarrow\left(m-1\right)\left(m-6\right)\Leftrightarrow\orbr{\begin{cases}m=1\\m=6\end{cases}}\)

b, Với x = 2 \(\left(1\right)\Leftrightarrow4-2\left(2m+3\right)+m^2+3m+2=0\)

\(\Leftrightarrow m^2-m=0\Leftrightarrow m\left(m-1\right)=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=1\end{cases}}\)

Với m = 0, \(\left(1\right)\Leftrightarrow x^2-3x+2=0\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

Với m = 1, \(\left(1\right)\Leftrightarrow x^2-5x+6=0\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)

c, \(\Delta=4m^2+12m+9-4m^2-12m-8=1>0\)

Vì \(\Delta>0\)nên phương trình có 2 nghiệm phân biệt với mọi m.

13 tháng 5 2019

d, Theo vi-ét ta có: \(\hept{\begin{cases}x_1+x_2=2m+3\left(1\right)\\x_1.x_2=m^2+3m+2\left(2\right)\end{cases}}\)

Ta có: \(x_1^2+x_2^2=1\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)

\(\Leftrightarrow\left(2m+3\right)^2-2\left(m^2+3m+2\right)=1\)

\(\Leftrightarrow4m^2+12m+9-2m^2-6m-4-1=0\)

\(\Leftrightarrow2m^2-6m-4=0\Leftrightarrow m^2-3m-2=0\Leftrightarrow m=\frac{3\pm\sqrt{17}}{2}\)

c, Phương trình có nghiệm này bằng 3 nghiệm kia:\(\Leftrightarrow x_1=3x_2\left(3\right)\)

Kết hợp (1) và (3) ta có hệ : \(\hept{\begin{cases}x_1+x_2=2m+3\\x_1=3x_2\end{cases}\Leftrightarrow\hept{\begin{cases}x_1=\frac{6m+9}{5}\\x_2=\frac{2m+3}{5}\end{cases}}\left(I\right)}\)

Kết hợp (I) và (2) ta được: \(\frac{\left(6m+9\right)\left(2m+3\right)}{25}=m^2+3m+2\)

\(\Leftrightarrow25m^2+75m+50=12m^2+36m^2+27\)

\(\Leftrightarrow13m^2+39m^2+23=0\)

...

17 tháng 4 2016

trời đất
ai tl hộ mình vs

20 tháng 3 2021

a)\(\Delta\)=(2m+3)^2-4.(m^2-1)

        =12m+13

=>Phương trình có 2 nghiệm phân biệt<=>\(\Delta\ge0\)

Hay 12m+13>_0

<=>m>_-13/12

b)Vì phương trình có nghiệm x1=1 nên thay x=1 vào phương trình ta có

1^2-(2m+3)1+m^2-1=0

<=>m^2-2m-3=0

<=>m=-1 hoặc m=3

Áp dụng hệ thức Vi-ét ta có

x1.x2=m^2-1

=>x2=m^2-1

+)m=-1=>x2=0

+)m=3=>x2=8

c)Theo câu a ta có 

Phương trình có 2 nghiệm phân biệt<=>m>_-13/12

Áp dụng hệ thức Vi-ét ta có

x1+x2=2m+3 và x1.x2=m^2-1 (1)

Đặt A= x1^2+x2^2=(x1+x2)^2-2.x1.x2

Thay (1) vào A ta có

A=(2m+3)^2-2(m^2-1)

=4m^2+12m+11

=(2m+3)^2+2>_2 Hay GTNN của x1^2+x2^2 là 2

Dấu "=" xảy ra <=>2m+3=0<=>m=-3/2

d)Câu này dễ b tự lm nha

10 tháng 7 2016

can tui giup k

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0a) Giải phương trình với m = -2b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1c) Tìm các giá trị của m để phương trình trên có nghiệm kép2.Xác định m để mỗi cặp phương trình sau có nghiệm chunga) x2 + mx +2 = 0 và x2 +2x + m = 0b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 03. Cho phương trình (m+1)x2 +4mx +4m - 1 =0a) Giải phương trình với m...
Đọc tiếp

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0

a) Giải phương trình với m = -2

b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1

c) Tìm các giá trị của m để phương trình trên có nghiệm kép

2.Xác định m để mỗi cặp phương trình sau có nghiệm chung

a) x2 + mx +2 = 0 và x2 +2x + m = 0

b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 0

3. Cho phương trình (m+1)x2 +4mx +4m - 1 =0

a) Giải phương trình với m = - 2

b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt

c) Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện x1 = - 2x2

4. Cho phương trình x2 - 2(m+4)x +m2 -8 =0

a) Tìm m để biểu thức A= x12 + x22 - x1 - x2 đạt giá trị nhỏ nhất

b) Tìm m để biểu thức B= x1 + x2 -3x1x2 đạt giá trị lớn nhất

c) Tìm m để biểu thức C= x12 + x22 - x1x2 đạt giá trị lớn nhất

Mong mọi người giúp mình, mình thực sự rất cần. Cảm ơn trước ạ. Làm được bài nào thì cmt ngay giúp mình ạ.

1
18 tháng 2 2021

Bài 1 : a, Thay m = -2 vào phương trình ta được : 

\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)

Ta có : \(\Delta=64-60=4>0\)

Vậy phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)

b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)

\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)

\(1+2\left(m-2\right)+m^2-3m+5=0\)

\(6+2m-4+m^2-3m=0\)

\(2-m+m^2=0\)( giải delta nhé )

\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)

Vậy phương trình vô nghiệm 

c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )

25 tháng 10 2015

thế x1vào bt =>\(2\times3^2-\left(m+3\right)\times3+m-1=0\Leftrightarrow18-3m-9+m-1=0\)

<=>8 - 2m=0 <=>m=4

thế 4 vào bt 2x2 - (m + 3)x + m - 1 = 0 <=>2x2-7x+3=0 <=>\(\left(x-3\right)\left(2x-1\right)=0\Leftrightarrow x=3\)hoặc x=0.5 thỏa mãn 

b tương tự