Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình có 2 nghiệm x1;x2 thì :\(\Delta>0\)
\(\Delta=9+4.6=33>0\)
Theo định lí Vi-ét,ta có :
\(\left\{{}\begin{matrix}x_1+x_2=3\\x_1.x_2=-6\end{matrix}\right.\)
Mà : \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=3^2+12=21\)
=> Chọn A.(21)
a: \(\text{Δ}=\left(m+3\right)^2-4\left(-2m^2+2\right)\)
\(=m^2+6m+9+8m^2-8\)
=9m^2+6m+1
=(3m+1)^2
Để pt có hai nghiệm pb thì 3m+1<>0
=>m<>-1/3
\(\left\{{}\begin{matrix}x_1+x_2=-m-3\\3x_1+2x_2=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1+3x_2=-3m-9\\3x_1+2x_2=8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_2=-3m-17\\x_1=-m-3+3m+17=2m+14\end{matrix}\right.\)
x1x2=-2m^2+2
=>-2m^2+2=(-3m-17)(2m+14)
\(\Leftrightarrow2m^2-2=\left(3m+17\right)\left(2m+14\right)\)
\(\Leftrightarrow6m^2+42m+34m+238-2m^2+2=0\)
=>4m^2+76m+236=0
hay \(m=\dfrac{-19\pm5\sqrt{5}}{2}\)
b: \(x^2+\left(m-1\right)x+5m-6=0\)
\(\text{Δ}=\left(m-1\right)^2-4\left(5m-6\right)\)
=m^2-2m+1-20m+24
=m^2-22m+25
Để phương trình có hai nghiệm phân biệt thì m^2-22m+25>0
=>\(\left[{}\begin{matrix}m< 11-4\sqrt{6}\\m>11+4\sqrt{6}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_1+x_2=-m+1\\4x_1+3x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1+4x_2=-4m+4\\4x_1+3x_2=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_2=-4m+3\\x_1=-m+1+4m-3=3m-2\end{matrix}\right.\)
x1x2=5m-6
=>(-4m+3)(3m-2)=5m-6
=>-12m^2+8m+9m-6=5m-6
=>-12m^2+17m-5m=0
=>-12m^2+12m=0
=>m=0 hoặc m=1
ta có : \(\Delta'=\left(m\right)^2-\left(m+1\right)\left(m-1\right)=m^2-\left(m^2-1\right)\)
\(=m^2-m^2+1=1>0\forall m\) \(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt
ta có : \(x_1^2+x_2^2=5\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=5\) (1)
áp dụng hệ thức vi ét cho phương trình đầu ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2m}{m+1}\\x_1x_2=\dfrac{m-1}{m+1}\end{matrix}\right.\)
thay vào (1) ta có : \(\left(\dfrac{-2m}{m+1}\right)^2-2\left(\dfrac{m-1}{m+1}\right)=5\Leftrightarrow\dfrac{4m^2}{\left(m+1\right)^2}-2\dfrac{m-1}{m+1}=5\)
\(\Leftrightarrow\dfrac{4m^2-2\left(m-1\right)\left(m+1\right)}{\left(m+1\right)^2}=5\Leftrightarrow\dfrac{4m^2-2\left(m^2-1\right)}{\left(m+1\right)^2}=5\)
\(\Leftrightarrow\dfrac{4m^2-2m^2+2}{\left(m+1\right)^2}=5\Leftrightarrow4m^2-2m^2+2=5\left(m+1\right)^2\)
\(\Leftrightarrow2m^2+2=5\left(m^2+2m+1\right)\Leftrightarrow2m^2+2=5m^2+10m+5\)
\(\Leftrightarrow5m^2+10m+5-2m^2-2=0\Leftrightarrow3m^2+10m+3=0\)
\(\Leftrightarrow3m^2+m+9m+3=0\Leftrightarrow m\left(3m+1\right)+3\left(3m+1\right)=0\)
\(\Leftrightarrow\left(m+3\right)\left(3m+1\right)=0\Leftrightarrow\left[{}\begin{matrix}m+3=0\\3m+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=\dfrac{-1}{3}\end{matrix}\right.\)
vậy \(m=-3;m=\dfrac{-1}{3}\) là thỏa mãn điềm kiện bài toán
\(\Delta=4m^2+4m+1\)
phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\)
\(\Leftrightarrow m\ne-\frac{1}{2}\)
theo hệ thức viete : \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1.x_2=-m-1\end{matrix}\right.\)
ta có : x12+x22=2
<=> (x1+x2)2-2x1x2-2=0
<=> 4m2+2m+2-2=0
<=> 4m2+2m=0
\(\Leftrightarrow\left[{}\begin{matrix}m=-\frac{1}{2}\\m=0\end{matrix}\right.\)
kết hợp với \(m\ne-\frac{1}{2}\)
=> m=0
a) Ta có: \(\Delta\) = (-2m)2 - 4.1.(m-2) = 4m2 - 4m + 8 = (4m2 - 4m + 1) + 7 = (2m-1)2 + 7 \(\ge\) 7 > 0 x do đo (1) luôn có 2 nghiệm với mọi m.
\(\left\{{}\begin{matrix}m\ne0\\\Delta'>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m< 1\end{matrix}\right.\)
Khi đó \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m+2}{m}\\x_1x_2=\dfrac{m+3}{m}\end{matrix}\right.\)
\(x_1^3+x_2^3-2\left(x_1+x_2\right)=0\Leftrightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2\right)-2\left(x_1+x_2\right)=0\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2-2\right)=0\)
TH1: \(x_1+x_2=0\Leftrightarrow\dfrac{2\left(m+1\right)}{m}=0\Rightarrow m=-1\)
TH2: \(\left(x_1+x_2\right)^2-3x_1x_2-2=0\Leftrightarrow\left(\dfrac{2m+2}{m}\right)^2-\dfrac{3m+9}{m}-2=0\)
\(\Leftrightarrow m^2+m-4=0\Rightarrow\left[{}\begin{matrix}m=\dfrac{-1-\sqrt{17}}{2}\\m=\dfrac{-1+\sqrt{17}}{2}\left(l\right)\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}m=-1\\m=\dfrac{-1-\sqrt{17}}{2}\end{matrix}\right.\)
1.
\(\Delta'=1-m>0\Rightarrow m< 1\)
Để pt có 2 nghiệm t/m đề bài
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)>0\\\frac{x_1+x_2}{2}< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\2< 4\end{matrix}\right.\) \(\Rightarrow0< m< 1\)
2. Để pt có 2 nghiệm pb
\(\left\{{}\begin{matrix}m\ne2\\\Delta'=m^2-\left(m-2\right)\left(m+3\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m< 6\end{matrix}\right.\)
Để 2 nghiệm đều dương: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2m}{m-2}>0\\x_1x_2=\frac{m+3}{m-2}>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>2\\m< -3\end{matrix}\right.\)
Kết hợp lại: \(\left[{}\begin{matrix}2< m< 6\\m< -3\end{matrix}\right.\)
3. Đặt \(f\left(x\right)=\left(m-3\right)x^2+\left(m-1\right)x+m\)
Để pt có 2 nghiệm thỏa mãn đề bài
\(\Leftrightarrow\left(m-3\right).f\left(2\right)< 0\)
\(\Leftrightarrow\left(m-3\right)\left(7m-14\right)< 0\Rightarrow2< m< 3\)
\(\Delta'=m^2-m^2+m-1=m-1\ge0\Rightarrow m\ge1\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-m+1\end{matrix}\right.\)
\(S=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=4m^2-2\left(-m+1\right)\)
\(=4m^2+2m+1\)
Xét \(f\left(m\right)=4m^2+2m+1\) trên \([1;+\infty)\)
\(a=4>0\) ; \(-\frac{b}{2a}=-\frac{1}{4}< 1\Rightarrow f\left(m\right)\) đồng biến trên \([1;+\infty)\)
\(\Rightarrow S_{min}=f\left(m\right)_{min}=f\left(1\right)=7\)