Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Phần này dễ, bạn tự làm nha!! :))
b, Để phương trình có 2 nghiệm khác 0 thì: \(\Delta^'\ge0\)
Hay: \(\left(-1\right)^2-\left(-3m^2\right)\ge0\)
\(\Leftrightarrow1+3m^2\ge0\)
Mà: \(1+3m^2>0\forall m\)
=> PT luôn có 2 nghiệm phân biệt với mọi m
Theo Vi-ét, ta có: \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-3m^2\end{cases}}\)
Ta có: \(\frac{x_1}{x_2}-\frac{x_2}{x_1}=\frac{8}{3}\)
\(\Leftrightarrow\frac{x_1^2-x_2^2}{x_1x_2}=\frac{8}{3}\)
\(\Leftrightarrow\frac{\left(x_1+x_2\right)\left(x_1-x_2\right)}{x_1x_2}=\frac{8}{3}\)
\(\Leftrightarrow\frac{\left(x_1+x_2\right)\sqrt{\left(x_1-x_2\right)^2}}{x_1x_2}=\frac{8}{3}\) (x1>x2)
\(\Leftrightarrow\frac{\left(x_1+x_2\right)\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}{x_1x_2}=\frac{8}{3}\)
\(\Leftrightarrow\frac{2\sqrt{2^2-4\left(-3m^2\right)}}{-3m^2}=\frac{8}{3}\)
\(\Leftrightarrow\frac{2\sqrt{4+12m^2}}{-3m^2}=\frac{8}{3}\)
\(\Leftrightarrow6\sqrt{4+12m^2}=-24m^2\)
Mà: \(6\sqrt{4+12m^2}\ge0\forall m\)
và \(-24m^2\le0\forall m\)
=> Không có giá trị của m thỏa mãn
=.= hk tốt!!
( Có gì sai sót mong bạn bỏ qua ạ ><)
a) Ta có:
\(\Delta=m^2-4\left(2m-4\right)=m^2-8m+16=\left(m-4\right)^2\)
Mà \(\left(m-4\right)^2\ge0\Leftrightarrow\Delta\ge0\)với mọi m
Vậy phương trình luôn có nghiệm với mọi m
b) Áp dụng hệ thức Viet ta có: \(\hept{\begin{cases}x_1+x_2=-m\\x_1.x_2=2m-4\end{cases}}\)
Ta có: \(A=\frac{x_1.x_2}{x_1+x_2}=\frac{2m-4}{-m}=\frac{2m}{-m}-\frac{4}{-m}=-2+\frac{4}{m}\)
Để A đạt giá trị nguyên thì 4/m đạt giá trị nguyên <=> m là ước của 4
Mà m nguyên dương nên m = 1; 2; 4
Vậy m = 1; 2; 4
\(a)\) Khi m=1 pt \(\Leftrightarrow\)\(x^2-2x=0\)\(\Leftrightarrow\)\(x\left(x-2\right)=0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy pt có hai nghiệm phân biệt \(\hept{\begin{cases}x_1=0\\x_2=2\end{cases}}\) khi m=1
\(b)\)\(\Delta'=\left(-m\right)^2-\left(2m-2\right)=m^2-2m+2=\left(m-1\right)^2+1>0\)
Vậy pt (1) luôn có hai nghiệm phân biệt \(x_1,x_2\) với mọi m
Ta có : \(x_1^2+x_2^2=12\)\(\Leftrightarrow\)\(\left(x_1+x_2\right)^2-2x_1x_2=12\) (*)
Theo định lý Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=2m-2\end{cases}}\)
(*) \(\Leftrightarrow\)\(\left(2m\right)^2-2\left(2m-2\right)=12\)
\(\Leftrightarrow\)\(4m^2-4m-8=0\)
\(\Leftrightarrow\)\(m^2-m-2=0\) (2)
Có \(\Delta=\left(-1\right)^2-4.\left(-2\right)=9>0\)
pt (2) có hai nghiệm phân biệt \(\hept{\begin{cases}m_1=\frac{-\left(-1\right)+\sqrt{9}}{2}\\m_2=\frac{-\left(-1\right)-\sqrt{9}}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}m_1=2\\m_2=-1\end{cases}}}\)
Vậy để \(x_1^2+x_2^2=12\) thì \(\orbr{\begin{cases}m=-1\\m=2\end{cases}}\)
\(c)\) Ta có : \(A=\frac{6\left(x_1+x_2\right)}{x_1^2+x_2^2+4\left(x_1+x_2\right)}=\frac{6\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2+4\left(x_1+x_2\right)-2x_1x_2}=\frac{6.2m}{\left(2m\right)^2+4.2m-2\left(2m-2\right)}\)
\(A=\frac{12m}{4m^2+4m+4}=\frac{3m}{m^2+m+1}\)\(\Leftrightarrow\)\(Am^2+\left(A-3\right)m+A=0\)
+) Nếu \(A=0\) thì \(m=0\)
+) Nếu \(A\ne0\) thì pt có nghiệm \(\Leftrightarrow\)\(\Delta\ge0\)
\(\Leftrightarrow\)\(\left(A-3\right)^2-4A.A\ge0\)
\(\Leftrightarrow\)\(-3A^2-6A+9\ge0\)
\(\Leftrightarrow\)\(A^2+2A-3\le0\)
\(\Leftrightarrow\)\(\left(A+1\right)^2\le4\)
\(\Leftrightarrow\)\(-3\le A\le1\)
\(\Rightarrow\)\(A\le1\) dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{3m}{m^2+m+1}=1\)\(\Leftrightarrow\)\(m=1\)
Vậy GTLN của \(A=1\) khi \(m=1\)
b) \(\Delta=4-4\left(-m\right)=4+4m\). pt có nghiệm <=> \(\Delta\ge0\Leftrightarrow4+4m\ge0\Leftrightarrow m\ge-1\)
pt có nghiệm với mọi m>=-1 => áp dụng hệ thức vi ét ta có: \(x1+x2=-2\); \(x1.x2=-m\);
\(x1^4+x2^4=\left(x1+x2\right)^4-4x1^3x2-6x1^2x^2_2-4x1x2^3=16-2x1.x2\left(2x^2+3x1.x2+2x^2_2\right)\)
\(=16+2m\left[2\left(x1^2+2x1.x2+x2^2\right)-x1.x2\right]=16+2m\left[2\left(x1+x2\right)^2+m\right]=16+2m.4+2m^2=2m^2+8m+16\)
\(=2\left(m^2+4m+8\right)=2\left(m^2+4m+4+4\right)=2\left(m+2\right)^2+8\)
\(m\ge-1\Rightarrow m+2\ge1\Leftrightarrow2\left(m+2\right)^2+8\ge10\)=> Min P=10 <=> m=-1
Sao ở khúc 16 + 2m [2 (x1 + x2) ^ 2 + m] = 16 + 2*4 +2m vậy?
a) coi m là tham số ta được:
Δ,=(-2)^2-1.m = 4-m
Pt có no <=> Δ,>=0 <=> m<=4
b) pt có2nghiệm là
x1= 2 - căn (4-m) , x2= 2+ căn (4-m)
thay vào 1/x1 +1/x2 =4 ta được:
1/(2-căn (4-m) +1/(2+căn (4-m) =4
<=>[2+ căn (4-m) +2 -căn (4-m)] / [ 4-4-m] =4
<=> 4/ -m=4
<=> m=-1
a) Để phương trình:x2-4x+m có nghiệm thì:\(\Delta\)'=(-2)2-1.m\(\ge\)0<=>4-m\(\ge\)0<=>m\(\le\)4
b)Ta có:\(\frac{1}{x_1}\)+\(\frac{1}{x_2}\)=\(\frac{x_1+x_2}{x_1.x_2}\)=4 (*)
Do x1,x2 là 2 nghiệm của phương trình x2-4x+m
Nên theo Định lý Viète, ta được: \(\hept{\begin{cases}x_1+x_2=4\\x_1.x_x=m\end{cases}}\)
Thay vào đẳng thức (*), ta được::\(\frac{1}{x_1}\)+\(\frac{1}{x_2}\)=\(\frac{4}{m}\)=4<=>m=1
a) x1^2+x2^2=(x1+x2)^2-2x1x2
x1^3+x2^3=(x1+x2)(x1^2+x2^2-x1x2)
áp dụng viét thay vô
b) giải hệ pt
đenta>=0
x1+x2=-m
x1x2=m+3
và 2x1+3x2=5
c)thay x=-3 vào tìm ra m rồi thay m đó vô giải ra lại
d)áp dụng viét
x1+x2=-m
x1x2=m+3
CT liên hệ ko phụ thuộc m là x1 +x2+x1x2=-m+m+3=3
.