Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tự giải
b) xét denta, đặt điều kiện của m
xét viet x1+x2 vs x1.x2
từ x1^3x2 + x1x2^3 =-11 => x1x2(x1^2+x2^2) = -11 =>x1x2((x1+x2)^2)-2x1x2) =-11
thế viet vao giải, nhơ so sánh đk
Điều kiện để phương có hai nghiệm phân biệt :
\(\Delta'\ge0\Leftrightarrow\left(-1\right)^2-\left(m-1\right)\ge0\)
\(\Leftrightarrow1-m+1\ge0\Leftrightarrow2-m\ge0\Leftrightarrow m\le2\)
theo hệ thức vi ét ta có :
\(S=x_1+x_2=2\)
\(P=x_1\cdot x_2=m-1\)
\(2x_1-x_2=7\)\(\Leftrightarrow2\left(x_1+x_2\right)-3x_2=7\Leftrightarrow2\cdot2-3x_2=7\Leftrightarrow x_2=-1\Rightarrow x_1=3\)
mà \(x_1\cdot x_2=m-1\Leftrightarrow\left(-1\right)\cdot3=m-1\Leftrightarrow-3=m-1\Leftrightarrow m=-2\)(T/M)
|x1-x2|=3<=>Căn (x1-x2)2=9<=>căn [(x1+x2)2-4x1x2]=9
theo hệ thức vi et x1+x2=5; x1x2=m
bạn thay vào rồi giải nhé
Ta có :
\(\Delta=25-4m\) \(\)
Để phương trình đã cho có nghiệm thì \(\Delta\ge0\Leftrightarrow m\le\frac{25}{4}\)
Theo hệ thức Vi- et , ta có :
\(x_1+x_2=5\) (1)
\(x_1.x_2=m\) (2)
Mặt khác ta có : \(|x_1-x_2|=3\) (3)
Từ (1) và (3)
\(\Rightarrow x_1=1\)
và \(x_2=4\)
Hoặc \(x_1=4\)và \(x_2=1\) (4)
Từ (2) và (4)
\(\Rightarrow m=4\)
Vậy m thỏa mãn phương trình trên là 4
Để phương trình có 2 nghiệm \(x_1,x_2\)thì \(\Delta=4\left(m^2+2m+1\right)-4\left(2m+3\right)>0\Leftrightarrow4m^2-8>0\)
\(\Leftrightarrow m^2>2\Leftrightarrow\orbr{\begin{cases}m< -\sqrt{2}\\m>\sqrt{2}\end{cases}}\)
Theo hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=2.\left(m+1\right)\\x_1.x_2=2m+3\end{cases}}\)
Từ \(\left(x_1-x_2\right)^2=4\Leftrightarrow x_1^2-2x_1x_2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-4x_1.x_2=4\)
\(\Rightarrow4\left(m+1\right)^2-4\left(2m+3\right)=4\Leftrightarrow4m^2+8m+4-8m-12-4=0\)
\(\Leftrightarrow m^2=3\Leftrightarrow\orbr{\begin{cases}m=\sqrt{3}\\m=-\sqrt{3}\end{cases}}\)
Kết hợp ĐK ta thấy \(\orbr{\begin{cases}m=\sqrt{3}\\m=-\sqrt{3}\end{cases}}\)thỏa mãn yêu cầu bài toán
1: Thay x=3 vào pt,ta được:
9+6+m=0
hay m=-15
2: \(\text{Δ}=2^2-4\cdot1\cdot m=-4m+4\)
Để phương trình có hai nghiệm thì -4m+4>=0
hay m<=1
Theo đề, ta có hệ phươg trình:
\(\left\{{}\begin{matrix}3x_1+2x_2=1\\x_1+x_2=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=5\\x_2=-7\end{matrix}\right.\)
Theo Vi-et,ta được:
\(x_1x_2=m\)
=>m=-35(nhận)