K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2019

b/ x22 + x2 = x12 + x1

   Chuyển thành --> x1+ x1 - x2 -x2= 0 

                                x1-x22  ( Hằng đẳng thức) = (x1-x2)(x1+x2)

                                x1-x2=0

Có được (x1-x2)(x1+x2) -(x1+x2)=0

Thay vi - et vào ta có ( x1-x2) ( 2m) - ( 2m) =0  

  x1-x2=0

 ( x1-x2) =0

 (x1+x2)2 -4x1.x2 =0 

---> Thay vi-et vào được 4m2 -16=0 --> m= +2 và -2 ( xem điều kiện câu a để nhận hay loại)

8 tháng 5 2020

a) Vì \(x=-2\)là một nghiệm của phương trình

\(\Rightarrow\)Thay \(x=-2\)vào pt(1) ta được:

\(\left(-2\right)^2-2.m.\left(-2\right)+4=0\)\(\Leftrightarrow4+4m+4=0\)

\(\Leftrightarrow4m+8=0\)\(\Leftrightarrow4m=-8\)\(\Leftrightarrow m=-2\)

Vậy \(m=-2\)

25 tháng 7 2015

câu 1:

Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)

có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)

\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)

câu 2 mk k bik lm nha 

 

17 tháng 5 2018

Bạn tham khảo ở đường link dưới nhé

Câu hỏi của Châu Minh Khang - Toán lớp 9 - Học toán với OnlineMath

13 tháng 4 2018

a) Ta có \(\Delta'=m^2+1>0\forall m\) nên phương trình luôn có hai nghiệm phân biệt với mọi m

b) Theo Viet ta có:

\(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=-1\end{cases}}\)

Vậy nên \(x_1^2+x_2^2-x_1x_2=\left(x_1+x_2\right)^2-3x_1x_2=4m^2+3\)

Để \(x_1^2+x_2^2-x_1x_2=7\Rightarrow4m^2+3=7\Rightarrow\orbr{\begin{cases}m=1\\m=-1\end{cases}}\)

6 tháng 6 2018

b theo viet co 

x1+x2=2m

x1*x2=-1

x1^2+x2^2-x1*x2=7

(x1+x2)^2 -2x1*x2-x1-x2=7

4m^2+2+1=7

4m^2=4 m=+-1

7 tháng 6 2015

a) \(\Delta=4m^2-4\left(3m-4\right)=4m^2-12m+16=\left(2m-3\right)^2+7>0\)với mọi m=> pt (1) có nghiệm phân biệt với mọi m

b)áp dụng đ.lí Viét ta có: \(x_1+x_2=2m\)\(x_1.x_2=m^2+3m-4\)

\(x_1^2+x_2^2=\left(x1+x2\right)^2-2x1.x2=4m^2-2\left(m^2+3m-4\right)=4m^2-2m^2-6m+8\)

    \(=2\left(m^2+3m-4\right)=2\left[\left(m+\frac{3}{2}\right)^2-4-\frac{9}{4}\right]=2\left[\left(m+\frac{3}{2}\right)^2-\frac{25}{4}\right]\)

A đặt giá trị nhỏ nhất khi m = -3/2

30 tháng 4 2019

a,Phần này dễ, bạn tự làm nha!! :))

b, Để phương trình có 2 nghiệm khác 0 thì: \(\Delta^'\ge0\)

Hay: \(\left(-1\right)^2-\left(-3m^2\right)\ge0\)

\(\Leftrightarrow1+3m^2\ge0\)

Mà: \(1+3m^2>0\forall m\)

=> PT luôn có 2 nghiệm phân biệt với mọi m

Theo Vi-ét, ta có: \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-3m^2\end{cases}}\)

Ta có: \(\frac{x_1}{x_2}-\frac{x_2}{x_1}=\frac{8}{3}\)

\(\Leftrightarrow\frac{x_1^2-x_2^2}{x_1x_2}=\frac{8}{3}\)

\(\Leftrightarrow\frac{\left(x_1+x_2\right)\left(x_1-x_2\right)}{x_1x_2}=\frac{8}{3}\)

\(\Leftrightarrow\frac{\left(x_1+x_2\right)\sqrt{\left(x_1-x_2\right)^2}}{x_1x_2}=\frac{8}{3}\)  (x1>x2)

\(\Leftrightarrow\frac{\left(x_1+x_2\right)\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}{x_1x_2}=\frac{8}{3}\)

\(\Leftrightarrow\frac{2\sqrt{2^2-4\left(-3m^2\right)}}{-3m^2}=\frac{8}{3}\)

\(\Leftrightarrow\frac{2\sqrt{4+12m^2}}{-3m^2}=\frac{8}{3}\)

\(\Leftrightarrow6\sqrt{4+12m^2}=-24m^2\)

Mà: \(6\sqrt{4+12m^2}\ge0\forall m\)

và \(-24m^2\le0\forall m\)

=> Không có giá trị của m thỏa mãn

=.= hk tốt!!

( Có gì sai sót mong bạn bỏ qua ạ ><)

27 tháng 1 2023

sai từ khúc x1>x2 rồi minh mới giải xong m=+-1