Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+\left(m+2\right)x+m-1\)
\(\Delta=b^2-4ac=\left(m+2\right)^2-4.1.\left(m-1\right)\)
\(=m^2+4m+4-4m+4\)
\(=m^2+8\)
Vì \(m^2\ge0\forall m\Rightarrow m^2+8\ge8>0\forall m\Rightarrow\Delta>0\forall m\)
Vậy phương trình luôn có hai nghiệm phân biệt với mọi m
Áp dụng hệ thức vi-ét ta có:
\(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=-\left(m+2\right)\\x_1x_2=\frac{c}{a}=m-1\end{cases}}\)
Theo bài ra ta có:
\(A=x_1^2+x_2^2-3x_1x_2\)
\(=\left(x_1+x_2\right)^2-2x_1x_2-3x_1x_2\)
\(=\left(x_1+x_2\right)^2-5x_1x_2\)
Đến đây dễ r:)
a)\(x^2-\left(m+2\right)x+m=0\)
(a=1;b=-(m+2);c=m)
Ta có:\(\Delta=\left[-\left(m+2\right)\right]^2-4.1.m\)
\(=\left(m+2\right)^2-4m\)
\(=m^2+2m.2+2^2-4m\)
\(=m^2+4m+4-4m\)
\(=m^2+4\)
Vì\(m^2\ge0\forall m\Rightarrow m^2+4m\ge0\left(1\right)\)
Vậy pt luôn có nghiện với mọi m
b,Xét hệ thức vi-ét,ta có:
\(\hept{\begin{cases}x_1+x_2=m+2\\x_1.x_2=m\end{cases}}\)
Theo đề bài ,ta có:
\(x_1+x_2-3x_1x_2=2\)
\(\Leftrightarrow m+2-3m=2\)
\(\Leftrightarrow-2m+2=2\)
\(\Leftrightarrow-2m=2-2\)
\(\Leftrightarrow m=0\)[t/m(1)]
Vậy với m=0 thì pt thảo mãn điều kiện đề bài cho
a, Ta có : \(\Delta=\left(m+2\right)^2-4m=m^2+4m+4-4m=m^2+4>0\forall m\)
b, Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m+2\\x_1x_2=\frac{c}{a}=m\end{cases}}\)
Lại có : \(x_1+x_2-3x_1x_2=2\Rightarrow m+2-3m=2\)
\(\Leftrightarrow-2m=0\Leftrightarrow m=0\)
b, \(\Delta'=b'^2-ac=\left[-\left(m-1\right)\right]^2-1.\left(-m-3\right)=m^2-2m+1+m+3\)
\(=m^2-m+4=m^2-m+\frac{1}{4}+\frac{15}{4}=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\)
Vậy pt (1) có 2 nghiệm x1,x2 với mọi m
Theo hệ thức vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\left(2\right)\\x_1x_2=-m-3\left(3\right)\end{cases}}\)
Ta có: \(x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\)
<=>\(4\left(m-1\right)^2-2\left(-m-3\right)=10\)
<=>\(4m^2-8m+4+2m+6=10\)
<=>\(4m^2-6m+10=10\Leftrightarrow2m\left(2m-3\right)=0\)
<=>\(\orbr{\begin{cases}m=0\\m=\frac{3}{2}\end{cases}}\)
c, Từ (2) => \(m=\frac{x_1+x_2+2}{2}\)
Thay m vào (3) ta có: \(x_1x_2=\frac{-x_1-x_2-2}{2}-3=\frac{-x_1-x_2-8}{2}\)
<=>\(2x_1x_2+x_1+x_2=-8\)
Giải
a) \(\Delta=\left(-m\right)^2-4.\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0,\forall m\)
Phương trình đã cho có 2 nghiệm phân biệt ,\(\forall m\Leftrightarrow m-2\ne0\)
<=> \(m\ne2\)
b) Theo định lí Viet ta có : \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)