Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=4-m+1=5-m\ge0\Rightarrow m\le5\)
Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m-1\end{matrix}\right.\)
a/ \(x_1^3+x_2^3=40\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-40=0\)
\(\Leftrightarrow4^3-12\left(m-1\right)-40=0\Rightarrow m=3\)
b/ \(P=\left(x_1x_2\right)^2+5\left(x_1+x_2\right)^2-10x_1x_2+4\)
\(=\left(m-1\right)^2+5.4^2-10\left(m-1\right)+4\)
\(=m^2-12m+95\)
\(=\left(7-m\right)\left(5-m\right)+60\)
Do \(m\le5\Rightarrow\left\{{}\begin{matrix}7-m>0\\5-m\ge0\end{matrix}\right.\) \(\Rightarrow\left(7-m\right)\left(5-m\right)\ge0\)
\(\Rightarrow P\ge60\Rightarrow P_{min}=60\) khi \(m=5\)
\(5\left(x^2_1+x_2^2\right)=5\left(x_1^2+x_2^2+2x_1x_2-2x_1x_2\right)=5\left(x_1+x_2\right)^2-10x_1x_2\)
\(\Delta=\left(m-2\right)^2+8m=m^2+4m+4=\left(m+2\right)^2\ge0\) \(\forall m\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm
Theo Viet ta có \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=-2m\end{matrix}\right.\)
\(A=x_1^2+x_2^2=x_1^2+x_2^2+2x_1x_2-2x_1x_2\)
\(A=\left(x_1+x_2\right)^2-2x_1x_2=\left(m-2\right)^2+4m\)
\(A=m^2+4\ge4\)
\(\Rightarrow A_{min}=4\) khi \(m=0\)
a) Ta có: \(\Delta\) = (-2m)2 - 4.1.(m-2) = 4m2 - 4m + 8 = (4m2 - 4m + 1) + 7 = (2m-1)2 + 7 \(\ge\) 7 > 0 x do đo (1) luôn có 2 nghiệm với mọi m.
a: Để PT có hai nghiệm trái dấu thì 2m-4<0
=>m<2
b: Khi x=1 thì PT sẽ là \(1+4+2m-4=0\)
=>m=-1/2
\(x_1+x_2=-4\)
=>x2=-4-1=-5
c: \(\text{Δ}=4^2-4\left(2m-4\right)=16-8m+16=-8m+32\)
ĐểPT có 2 nghiệm thì -8m+32>=0
=>-8m>=-32
=>m<=4
\(x_1^2+x_2^2=10\)
=>(x1+x2)^2-2x1x2=10
\(\Leftrightarrow\left(-4\right)^2-2\left(2m-4\right)=10\)
=>16-4m+8=10
=>24-4m=10
=>4m=14
=>m=7/2
Bài 2:
a: \(\text{Δ}=\left(4m+2\right)^2-4\left(4m+3\right)\)
\(=16m^2+16m+4-16m-12=16m^2-8\)
Để phương trình có hai nghiệm thì \(2m^2>=1\)
=>\(\left[{}\begin{matrix}m>=\dfrac{1}{\sqrt{2}}\\m< =-\dfrac{1}{\sqrt{2}}\end{matrix}\right.\)
c: \(A=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)
\(=\left(4m+2\right)^3-3\cdot\left(4m+3\right)\left(4m+2\right)\)
\(=64m^3+96m^2+48m+8-3\left(16m^2+20m+6\right)\)
\(=64m^3+96m^2+48m+8-48m^2-60m-18\)
\(=64m^3+48m^2-12m-10\)
(x2-3x+2)(x2-9x+20)=4
=>(x-1)(x-2)(x-4)(x-5)=4
Đặt x-3=a , phương trình tương đương:
(a+2)(a+1)(a-1)(a-2)=4
=>(a2-1)(a2-4)=4
=>a4-5a2=0
Tự giải nốt nhé!
Theo hệ thức vi-et ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-2m-6\\x_1x_2=m^2-3\end{matrix}\right.\)
\(P=5\left(x_1+x_2\right)-2x_1x_2=5\left(-2m-6\right)-2\left(m^2-3\right)\)
\(=-2m^2-10m-24\)
\(=-2\left[\left(m^2+5m+\frac{25}{4}\right)+\frac{23}{4}\right]\)
\(=-\frac{46}{4}-2\left(m+\frac{5}{2}\right)^2\le-\frac{46}{4}=-\frac{23}{2}\)
Vậy GTLN của P là \(-\frac{23}{2}\) khi \(m=-\frac{5}{2}\)
\(\Delta=\left(m+1\right)^2-4\left(m^2-2m+2\right)=-3m^2+10m-7\ge0\)
\(\Rightarrow1\le m\le\dfrac{7}{3}\)
\(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=m^2-2m+2\end{matrix}\right.\)
\(P=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\left(m+1\right)^2-2\left(m^2-2m+2\right)\)
\(=-m^2+6m-3\)
\(=\left(-m^2+6m-\dfrac{77}{9}\right)+\dfrac{50}{9}\)
\(=\left(\dfrac{11}{3}-m\right)\left(m-\dfrac{7}{3}\right)+\dfrac{50}{9}\le\dfrac{50}{9}\)
\(P_{max}=\dfrac{50}{9}\) khi \(m=\dfrac{7}{3}\)