Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=9-2m+3=12-2m>0\Rightarrow m< 6\)
Theo Viet ta có \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=2m-3\end{matrix}\right.\)
Do \(x_1;x_2\) là nghiệm của pt nên:
\(\left\{{}\begin{matrix}x_1-6x_1+2m-3=0\\x_2-6x_2+2m-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1^2-5x_1+2m-4=x_1-1\\x_2^2-5x_2+2m-4=x_2-1\end{matrix}\right.\)
Ta có:
\(\left(x_1^2-5x_1+2m-4\right)\left(x_2^2-5x_2+2m-4\right)=2\)
\(\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)=2\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1=2\)
\(\Leftrightarrow2m-3-6+1=2\)
\(\Leftrightarrow2m=10\Rightarrow m=5\)
Ta có phương trình x2-(2m+1)x+m2=0
Xét \(\Delta=\left(2m-1\right)^2-4m^2=-4m+1>0\)
\(\Rightarrow m< \frac{1}{4}\)
a, Khòng mất tính tổn quát giả sử \(0< x_1< x_2\)
Để pt có 2 nghiệm dương phân biệt thì : \(\hept{\begin{cases}\Delta>0\\S>0\\P>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m< \frac{1}{4}\\2m+1>0\\m>0\end{cases}\Leftrightarrow}0< m< \frac{1}{4}\)
b, Ta có\(x_1=\frac{2m+1-\sqrt{1-4m}}{2};x_2=\frac{2m+1+\sqrt{1-4m}}{2}\)
\(\Rightarrow\left(x_1-m\right)^2+x_2=3m\)
\(\Leftrightarrow\left(\frac{1-\sqrt{1-4m}}{2}\right)^2+\frac{2m+1+\sqrt{1-4m}}{2}=3m\)
Giải ra tìm được m :))))
B1 : giải PT (m tham số ) bằng cách tính denta > 0
B2 : áp dụng hệ thức VI-ÉT .. X1 + X2 = -b/a
.. X1X2 = c/a
B3: thay x1 + x2 = -b/a vào pt (2)
thay x1x2 = c/a vào pt (2)
Để phương trình có 2 nghiệm phân biệt thì △>0\(\Leftrightarrow b^2-4ac>0\Leftrightarrow\left(-6\right)^2-4.1.\left(2m-3\right)>0\Leftrightarrow36-8m+12>0\Leftrightarrow8m< 48\Leftrightarrow m< 6\)
Theo định lí Vi-ét với m<6 ta có
\(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}=\frac{6}{1}=6\\x_1x_2=\frac{c}{a}=\frac{2m-3}{1}=2m-3\end{matrix}\right.\)
Ta lại có \(\left(x_1^2-5x_1+2m-4\right)\left(x_2^2-5x_2+2m-4\right)=0\Leftrightarrow\left(x_1x_2\right)^2-5x_1^2x_2+\left(2m-4\right)x^2_1-5x_1x_2^2+25x_1x_2+5.\left(2m-4\right)x_1+\left(2m-4\right)x_2^2-5\left(2m-4\right)x_2+\left(2m-4\right)^2=0\Leftrightarrow\left(x_1x_2\right)^2-5x_1x_2\left(x_1+x_2\right)+\left(2m-4\right)\left(x_1^2+x_2^2\right)-5\left(2m-4\right)\left(x_1+x_2\right)+25x_1x_2+\left(2m-4\right)^2=0\Leftrightarrow\left(x_1x_2\right)^2-5x_1x_2\left(x_1+x_2\right)+\left(2m-4\right)\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5\left(2m-4\right)\left(x_1+x_2\right)+25x_1x_2+\left(2m-4\right)^2=0\Leftrightarrow\left(2m-3\right)^2-5\left(2m-3\right).6+\left(2m-4\right)\left[36-2\left(2m-3\right)\right]-5\left(2m-4\right).6+25.\left(2m-3\right)+\left(2m-4\right)^2=0\Leftrightarrow4m^2-12m+9-60m+90+100m-8m^2-168-60m+120+50m-75+4m^2-16m+16=0\Leftrightarrow2m-8=0\Leftrightarrow m=4\left(tm\right)\)
Vậy m=4 thì phương trình trên có 2 nghiệm phân biệt thỏa mãn \(\left(x_1^2-5x_1+2m-4\right)\left(x_2^2-5x_2+2m-4\right)=0\)
\(\Delta'\ge0\Rightarrow m\le6\)
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=2m-3\end{matrix}\right.\)
Do \(x_1;x_2\) là nghiệm nên:
\(\left\{{}\begin{matrix}x_1^2-6x_1+2m-3=0\\x_2^2-6x_2+2m-3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1^2-5x_1+2m-4=x_1-1\\x_2^2-5x_2+2m-4=x_2-1\end{matrix}\right.\)
Thay vào bài toán:
\(\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)=0\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1=0\)
\(\Leftrightarrow2m-3-6+1=0\)
\(\Leftrightarrow2m=8\Rightarrow x=4\)
có 2 nghiệm <=> \(\Delta=25-4\left(2m-2\right)=33-8m\ge0\Leftrightarrow m\le\frac{33}{8}\)
áp dụng hệ thức vi ét ta có: x1+x2=5(1); x1.x2=2m-2 (2)
\(2x1-5x2=-4\Leftrightarrow x1=\frac{-4+5x2}{2}\)
thay vào 1 ta có: \(x2+\frac{-4+5x2}{2}=5\Leftrightarrow7x2=14\Leftrightarrow x2=2\Rightarrow x1=\frac{-4+10}{2}=3\)
thay vào (2) ta có: \(2m-2=6\Leftrightarrow2m=8\Leftrightarrow m=4\)(t/m đk)
Để phương trình có 2 nghiệm \(x_1,x_2\)thì \(\Delta=4\left(m^2+2m+1\right)-4\left(2m+3\right)>0\Leftrightarrow4m^2-8>0\)
\(\Leftrightarrow m^2>2\Leftrightarrow\orbr{\begin{cases}m< -\sqrt{2}\\m>\sqrt{2}\end{cases}}\)
Theo hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=2.\left(m+1\right)\\x_1.x_2=2m+3\end{cases}}\)
Từ \(\left(x_1-x_2\right)^2=4\Leftrightarrow x_1^2-2x_1x_2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-4x_1.x_2=4\)
\(\Rightarrow4\left(m+1\right)^2-4\left(2m+3\right)=4\Leftrightarrow4m^2+8m+4-8m-12-4=0\)
\(\Leftrightarrow m^2=3\Leftrightarrow\orbr{\begin{cases}m=\sqrt{3}\\m=-\sqrt{3}\end{cases}}\)
Kết hợp ĐK ta thấy \(\orbr{\begin{cases}m=\sqrt{3}\\m=-\sqrt{3}\end{cases}}\)thỏa mãn yêu cầu bài toán
Giải \(\Delta\)
Vì x1,x2 là nghiệm của pt =>\(x_1^2-6x_1+2m-3=0;x_2-6x+2m-3=0\)
Áp dụng định lí vi -ét
\(\hept{\begin{cases}x_1+x_2=6\\x_1.x_2=2m-3\end{cases}}\)
Thay vào ... ta được
\(\left(0+x_1-1\right).\left(0+x_2-1\right)=2\)
\(=>x_1.x_2-\left(x_1+x_2\right)+1=2\)
\(2m-3-6+1=2=>m=5\)(t/m)
Vậy...
wao`
............
............
.............. \(hoangde\)