K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2015

khi m = 5 chứ nhầm :) hii. sr nha. sửa lại dùm mình

27 tháng 4 2015

* Áp dụng hệ thức Vi-ét: \(x_1x_2=m-3\) và \(x_1+x_2=-2\)

\(\Rightarrow\) A = \(\left(m-5\right)^2\)

Để A đại GTNN thì \(\left(m-5\right)^2\) đạt GTNN khi m = 0

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0a) Giải phương trình với m = -2b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1c) Tìm các giá trị của m để phương trình trên có nghiệm kép2.Xác định m để mỗi cặp phương trình sau có nghiệm chunga) x2 + mx +2 = 0 và x2 +2x + m = 0b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 03. Cho phương trình (m+1)x2 +4mx +4m - 1 =0a) Giải phương trình với m...
Đọc tiếp

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0

a) Giải phương trình với m = -2

b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1

c) Tìm các giá trị của m để phương trình trên có nghiệm kép

2.Xác định m để mỗi cặp phương trình sau có nghiệm chung

a) x2 + mx +2 = 0 và x2 +2x + m = 0

b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 0

3. Cho phương trình (m+1)x2 +4mx +4m - 1 =0

a) Giải phương trình với m = - 2

b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt

c) Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện x1 = - 2x2

4. Cho phương trình x2 - 2(m+4)x +m2 -8 =0

a) Tìm m để biểu thức A= x12 + x22 - x1 - x2 đạt giá trị nhỏ nhất

b) Tìm m để biểu thức B= x1 + x2 -3x1x2 đạt giá trị lớn nhất

c) Tìm m để biểu thức C= x12 + x22 - x1x2 đạt giá trị lớn nhất

Mong mọi người giúp mình, mình thực sự rất cần. Cảm ơn trước ạ. Làm được bài nào thì cmt ngay giúp mình ạ.

1
18 tháng 2 2021

Bài 1 : a, Thay m = -2 vào phương trình ta được : 

\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)

Ta có : \(\Delta=64-60=4>0\)

Vậy phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)

b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)

\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)

\(1+2\left(m-2\right)+m^2-3m+5=0\)

\(6+2m-4+m^2-3m=0\)

\(2-m+m^2=0\)( giải delta nhé )

\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)

Vậy phương trình vô nghiệm 

c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )

25 tháng 7 2015

câu 1:

Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)

có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)

\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)

câu 2 mk k bik lm nha 

 

23 tháng 5 2015

2. \(A=\frac{x^2-2x+2011}{x^2}=1-\frac{2}{x}+\frac{2011}{x^2}=\left(\frac{2011}{x^2}-\frac{2}{x}+\frac{1}{2011}\right)+\frac{2000}{2011}=\left(\frac{\sqrt{2011}}{x}-\frac{1}{\sqrt{2011}}\right)^2+\frac{2000}{2011}\)

\(\Leftrightarrow A\ge\frac{2000}{2011}\Rightarrow MinA=\frac{2000}{2011}\Leftrightarrow\frac{\sqrt{2011}}{x}=\frac{1}{\sqrt{2011}}\Leftrightarrow x=2011\)

20 tháng 5 2017

\(\Delta=4m^2+4m+1-4m^2-4m+24=25>0\)

suy ra phương trình có 2 nghiệm x1, x2 thỏa mãn:

\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{2m+1+5}{2}=m+3\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{2m+1-5}{2}=m-2\end{cases}}\)

hoặc ngược lại, x1=m-2 và x2=m+3

     Nếu x1=m+3 và x2=m-2 thay vào ta có: \(\left(m-2\right)^2-4\left(m+3\right)=m^2-4m+4-4m-12=m^2-8\ge-8\)

     Nếu ngược lại thay vào ta có:

\(\left(m+3\right)^2-4\left(m-2\right)=m^2+6m+9-4m+8=m^2-2m+17=\left(m-1\right)^2+16\ge16\)

Vậy m=0 thì thỏa mãn biểu thức đó nhỏ nhất

NV
24 tháng 5 2019

\(\Delta'=m^2+2m+1-4m=\left(m-1\right)^2\ge0\)

Phương trình luôn có nghiệm

Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m\end{matrix}\right.\)

\(A=2x_1^2+2x_2^2+4x_1x_2-4x_1x_2-x_1x_2\)

\(A=2\left(x_1+x_2\right)^2-5x_1x_2\)

\(A=8\left(m+1\right)^2-20m\)

\(A=8m^2-4m+8=8\left(m-\frac{1}{4}\right)^2+\frac{15}{2}\ge\frac{15}{2}\)

\(\Rightarrow A_{min}=\frac{15}{2}\) khi \(m-\frac{1}{4}=0\Leftrightarrow m=\frac{1}{4}\)

13 tháng 5 2017

a) Do x = -3 là 1 nghiệm của phương trình đã cho nên ta có :

     (-3)^2 - ( 3m - 2 ) * (-3) + 2m^2 -m+1=0

  <=>    9 + 9m - 6 + 2m^2 - m + 1 = 0

  <=>   2m^2 + 8m + 4 = 0

   <=>   m^2 + 4m + 2 = 0

denta phẩy = 2^2 - 1*2 = 4 - 2 = 2 >0

=> m1 = ( -2 + căn 2 ) / 1 = -2 + căn 2

     m2 = ( -2 - căn 2 ) / 1  = -2 - căn 2

Vậy với m = ........ ( kết luận)

b) x^2 - ( 30 - 2 ) + 2m^2 - m + 1 = 0

 denta = ( 3m - 2)^2 - 4 * 1 * ( 2m^2 - m + 1) = 9m^2 -12m + 4 - 8m^2 + 4m - 4 = m^2 - 8m = m( m - 8 )

Phương trình có nghiệm khi denta > hoặc = 0

=>  m( m - 8 ) > hoặc = 0

         m > hoặc = 0 và m - 8 > hoặc = 0

<=>  Hoặc  m < hoặc = 0 và m - 8 < hoặc = 0   ( dừng dấu ngoặc vuông để ngoặc giữa 2 dòng này nhé)

        m > hoặc = 0  và m > hoặc = 8

<=>  hoặc m< hoặc = 0 và m < hoặc = 8  ( giống trên )

          m > hoặc = 8

<=>  hoặc m < hoặc = 0

Vậy với m> hoặc = 8 hoặc m < hoặc = 0 thì phương trình đã cho có nghiệm

  Theo Vi-et ta có  x1 + x2 = 3m - 2

                         và x1 * x2 = 2m^2 - m + 1

P =x1^2 + x2^2 - 5x1x2 = ( x1 + x2 ) - 2x1x2 -5x1x2 = (x1 + x2 ) - 7x1x2 = 3m - 2 - 7 * ( 2m^2 - m + 1) ( do x1 +x2 = 3m + 2 và x1x2= 2m^2 - m + 1)

= 3m - 2 -14m^2 + 7m - 7 = -14m^2 - 10m - 9 

Mk làm được đến đây thôi ak 

có gì thì k cho mk nhé vis cái này mỏi lắm đấy *****