Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Khi m=2 pt \(\Leftrightarrow\)\(x^2-\left(2.2-1\right)x+2\left(2-1\right)=0\)
\(\Leftrightarrow\)\(x^2-3x+2=0\)\(\Leftrightarrow\)\(\left(x-1\right)\left(x-2\right)=0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy pt có hai nghiệm phân biệt \(\hept{\begin{cases}x_1=1\\x_2=2\end{cases}}\) khi m=2
\(b)\) Ta có : \(\Delta=\left(1-2m\right)^2-4m\left(m-1\right)=4m^2-4m+1-4m^2+4m=1>0\)
Vậy pt luôn có hai nghiệm phân biệt với mọi m
a, Thay m=1 vào phương trình, ta được: x2-3x+2=0
<=> x2-2x-x+2=0
<=> x(x-2) - (x-2)=0
<=> (x-2)(x-1)=0
<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
Vậy phương trình có tập nghiệm S={1;2}
b, Với m khác 0, phương trình trở thành phương trình bậc 2 có:
Delta = (2m+1)2 - 4m(m+1)
= 4m2+4m+1 - 4m2-4m
= 1>0
Vậy phương trình luôn có 2 nghiệm phân biệt với m khác 0.
c, Vì phương trình có delta>0 với mọi giá trị của m khác 0 nên không có giá trị nào của m để phương trình có nghiệm kép.
1, Khi \(m=0\), PT(1) trở thành: \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy \(S=\left\{0;1\right\}\)
2, PT đã cho có \(a=1>0\)nên đây là 1 PT bậc 2
Lập \(\Delta=b^2-4ac=\left(2m+1\right)^2-4\left(m^2+m\right)=4m^2+4m+1-4m^2-4m=1>0\)
Do đó PT (1) luôn có 2 nghiệm phân biệt
3, \(x_1< x_2\)là nghiệm của PT (1) \(\Rightarrow x_1=\frac{-b-\sqrt{\Delta}}{2a}< \frac{-b+\sqrt{\Delta}}{2a}=x_2\)
Ta có: \(x_2-x_1=\frac{2\sqrt{\Delta}}{2a}=1\Leftrightarrow x_2=x_1+1\forall m\)
Do đó khi m thay đổi thì \(A\left(x_1;x_2\right)\)nằm trên đường thẳng \(y=x+1\)cố định.
Câu 1 x^2 - 8x +12 = 0 ( a = 1 ; b' = -4 ; c = 12 )
denta phẩy = b' bình - ac = (-4)^2 - 1*12 = 16 - 12 = 4 > 0
Do denta phẩy > 0 => pt có 2 ngiệm phân biệt
x một = -b' + căn denta phẩy tất cả trên a = 4 + căn 4 trên 1 = 6
x hai = -b' - căn denta phẩy tất cả trên a = 4 - căn 4 trên 1 = 2
KLuan
Câu 2
a) Với m = -1 => x^2 + 4x +3 = 0 ( a = 1 ; b= 4 ; c = 3)
Xét a - b + c = 1 - 4 + 3 = 0
=> x một = -1 ; x hai = -c trên a = -3 / 1 = -3
b) denta = b^2 - 4ac = -( m - 3 ) tất cả mũ hai - 4 * 1 * ( - 2m + 1 )
= m^2 + 2m + 5
= m^2 + 2m + 1/4 + 19/4 > hoặc = 19/4 >0
Vậy với mọi m thì pt có 2 nghiệm phân biệt
CHÚC BẠN HỌC GIỎI NHA !!!!!!!!!!!!!!
\(x^2-\left(2m+3\right)x+m^2+3m+2=0\left(1\right).\)
a, Với m = 1, \(\left(1\right)\Leftrightarrow x^2-7m+6=0\Leftrightarrow\left(m-1\right)\left(m-6\right)\Leftrightarrow\orbr{\begin{cases}m=1\\m=6\end{cases}}\)
b, Với x = 2 \(\left(1\right)\Leftrightarrow4-2\left(2m+3\right)+m^2+3m+2=0\)
\(\Leftrightarrow m^2-m=0\Leftrightarrow m\left(m-1\right)=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=1\end{cases}}\)
Với m = 0, \(\left(1\right)\Leftrightarrow x^2-3x+2=0\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
Với m = 1, \(\left(1\right)\Leftrightarrow x^2-5x+6=0\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)
c, \(\Delta=4m^2+12m+9-4m^2-12m-8=1>0\)
Vì \(\Delta>0\)nên phương trình có 2 nghiệm phân biệt với mọi m.
d, Theo vi-ét ta có: \(\hept{\begin{cases}x_1+x_2=2m+3\left(1\right)\\x_1.x_2=m^2+3m+2\left(2\right)\end{cases}}\)
Ta có: \(x_1^2+x_2^2=1\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)
\(\Leftrightarrow\left(2m+3\right)^2-2\left(m^2+3m+2\right)=1\)
\(\Leftrightarrow4m^2+12m+9-2m^2-6m-4-1=0\)
\(\Leftrightarrow2m^2-6m-4=0\Leftrightarrow m^2-3m-2=0\Leftrightarrow m=\frac{3\pm\sqrt{17}}{2}\)
c, Phương trình có nghiệm này bằng 3 nghiệm kia:\(\Leftrightarrow x_1=3x_2\left(3\right)\)
Kết hợp (1) và (3) ta có hệ : \(\hept{\begin{cases}x_1+x_2=2m+3\\x_1=3x_2\end{cases}\Leftrightarrow\hept{\begin{cases}x_1=\frac{6m+9}{5}\\x_2=\frac{2m+3}{5}\end{cases}}\left(I\right)}\)
Kết hợp (I) và (2) ta được: \(\frac{\left(6m+9\right)\left(2m+3\right)}{25}=m^2+3m+2\)
\(\Leftrightarrow25m^2+75m+50=12m^2+36m^2+27\)
\(\Leftrightarrow13m^2+39m^2+23=0\)
...
a, Thay m = 0 vào phương trình trên ta được
\(x^2-2x-3=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=3\)
Vậy với m = 0 thì x = -1 ; x = 3