K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2015
theo de bai a=8 hay x,^2+x,,^2-6x,x,, =8 <=>(x,+x,,)^2-8x,x,,=8 (*) theo vi-et : S= m;P=m-1 thay vao pt (*) dc m^2-8m+8=8 <=>m^2-8m=0 <=>m(m-8)=0 <=>m=0 hoacm=8 dung k...x, la x1;x,,la x2 theo
1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0a) Giải phương trình với m = -2b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1c) Tìm các giá trị của m để phương trình trên có nghiệm kép2.Xác định m để mỗi cặp phương trình sau có nghiệm chunga) x2 + mx +2 = 0 và x2 +2x + m = 0b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 03. Cho phương trình (m+1)x2 +4mx +4m - 1 =0a) Giải phương trình với m...
Đọc tiếp

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0

a) Giải phương trình với m = -2

b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1

c) Tìm các giá trị của m để phương trình trên có nghiệm kép

2.Xác định m để mỗi cặp phương trình sau có nghiệm chung

a) x2 + mx +2 = 0 và x2 +2x + m = 0

b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 0

3. Cho phương trình (m+1)x2 +4mx +4m - 1 =0

a) Giải phương trình với m = - 2

b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt

c) Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện x1 = - 2x2

4. Cho phương trình x2 - 2(m+4)x +m2 -8 =0

a) Tìm m để biểu thức A= x12 + x22 - x1 - x2 đạt giá trị nhỏ nhất

b) Tìm m để biểu thức B= x1 + x2 -3x1x2 đạt giá trị lớn nhất

c) Tìm m để biểu thức C= x12 + x22 - x1x2 đạt giá trị lớn nhất

Mong mọi người giúp mình, mình thực sự rất cần. Cảm ơn trước ạ. Làm được bài nào thì cmt ngay giúp mình ạ.

1
18 tháng 2 2021

Bài 1 : a, Thay m = -2 vào phương trình ta được : 

\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)

Ta có : \(\Delta=64-60=4>0\)

Vậy phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)

b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)

\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)

\(1+2\left(m-2\right)+m^2-3m+5=0\)

\(6+2m-4+m^2-3m=0\)

\(2-m+m^2=0\)( giải delta nhé )

\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)

Vậy phương trình vô nghiệm 

c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )

17 tháng 4 2020

a) thay m=-1 vào x2(2m-1)x-m=0 ta có:

x2+(-3)x+1=0\(\Delta\)=5

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3+\sqrt{5}}{2}\\x=\frac{3-\sqrt{5}}{2}\end{cases}}\)

b) A=\(x_1^2+x_2^2-x_1x_2=\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2=\left(x_1+x_2\right)^2-3x_1x_2\)

Vi-et \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1x_2=-m\end{cases}}\)

=> \(A=\left(1-2m\right)^2-3\left(-m\right)=4m^2-4m+1+3m=4m^2-m+1\)

8 tháng 8 2015

a/

Ta có: \(c.a=-m^2+m-2=-\left(m-\frac{1}{2}\right)^2-\frac{7}{4}<\)\(0\) với mọi số thực m.

=> pt luôn có 2 nghiệm trái dấu

b/

Theo Viet: \(x_1+x_2=m-1;\text{ }x_1.x_2=-m^2+m-2\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(m-1\right)^2-2\left(-m^2+m-2\right)=3m^2-4m+5\)

\(=3\left(m^2-\frac{4}{3}m\right)+5=3\left(m^2-2.m.\frac{2}{3}+\frac{4}{9}\right)+5-3.\frac{4}{9}\)

\(=3\left(m-\frac{2}{3}\right)^2+\frac{11}{3}\ge\frac{11}{3}\)

Dấu "=" xảy ra khi m = 2/3.

Vậy GTNN của x2+y2 là 11/3.

c/\(x_1=2x_2\)

\(m-1=x_1+x_2=2x_2+x_2=3x_2\Rightarrow x_2=\frac{m-1}{3}\)

\(\Rightarrow x_1=2x_2=\frac{2}{3}\left(m-1\right)\)

\(x_1.x_2=-m^2+m-2\Rightarrow\frac{1}{3}\left(m-1\right).\frac{2}{3}\left(m-1\right)=-m^2+m-2\)

\(\Leftrightarrow2\left(m-1\right)^2=9\left[-\left(m-\frac{1}{2}\right)^2-\frac{7}{4}\right]\)

Pt trên vô nghiệm do \(VT\ge0>VP\)

Vậy không tồn tại m để......

Lưu ý câu c: ở trên là form làm bài dạng này chung, tuy nhiên, ở bài này ta thấy ngay không tồn tại m.

Do x1 và x2 trái dấu với mọi m 

Nên x1 ≠ x2 với mọi m.

 

11 tháng 4 2018

Cho phương trình x2 – mx + m2 -5 =0 (1) với m là tham số

1.Tìm m để phương trình có hai nghiệm trái dấu.

            2. Với những giá trị của m mà phương trình có nghiệm. Hãy tìm giá trị lớn nhất và nhỏ nhất trong tất cả các nghiệm đó.

1 tháng 4 2019

Bài 2. \(x^2-mx+m-1=0\)(1)

a) Phương trình (1) có: \(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0,\forall m\)

Suy ra phương trình luôn có nghiệm với mọi m

b) Áp dụng định lí Vi ét ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=m-1\end{cases}}\)

Ta có: \(x_1^2-x_2^2+x_1+x_2=0\Leftrightarrow\left(x_1+x_2\right)\left(x_1-x_2\right)+\left(x_1+x_2\right)=0\Leftrightarrow\left(x_1+x_2\right)\left(x_1-x_2\right)=0\)

<=>\(\orbr{\begin{cases}x_1+x_2=0\\x_1-x_2+1=0\end{cases}}\)

+) Với \(x_1+x_2=0\Leftrightarrow m=0\)(tm)

+) Với \(x_1-x_2+1=0\Leftrightarrow x_1=-1+x_2\)

Ta có \(x_1+x_2=m\Leftrightarrow-1+x_2+x_2=m\Leftrightarrow x_2=\frac{m+1}{2}\)

=> \(x_1=-1+x_2=-1+\frac{m+1}{2}=\frac{m-1}{2}\)

ta lại có: \(x_1.x_2=m-1\Leftrightarrow\frac{m+1}{2}.\frac{m-1}{2}=m-1\Leftrightarrow\orbr{\begin{cases}m-1=0\\\frac{m+1}{4}=1\end{cases}\Leftrightarrow\orbr{\begin{cases}m=1\\m=3\end{cases}}}\)(TM)

Vậy 

1 tháng 4 2019

Sửa lại :

2b) 

\(x_1^2-x_2^2+x_1-x_2=0\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2+1\right)=0\Leftrightarrow\orbr{\begin{cases}x_1-x_2=0\\x_1+x_2+1=0\end{cases}}\)

Với \(x_1-x_2=0\Leftrightarrow x_1=x_2\)

Ta có:\(x_1+x_2=m\Leftrightarrow2x_1=m\Leftrightarrow x_1=x_2=\frac{m}{2}\)

\(x_1.x_2=m-1\Leftrightarrow\frac{m}{2}.\frac{m}{2}=m-1\Leftrightarrow m^2=4m-4\Leftrightarrow\left(m-2\right)^2=0\Leftrightarrow m=2\)

+) Với \(x_1+x_2+1=0\Leftrightarrow m+1=0\Leftrightarrow m=-1\)

Vậy m=-1 hoặc m=2

28 tháng 4 2015

a)Ta có: \(\Delta\)= m2 - 4(m - 1) = m2 - 4m + 4 = (m - 2)\(\geq\)0 với mọi m

Vậy: PT có 2 nghiệm x1, x2 với mọi m

b)Theo Vi-et: x1 + x= m và x1x= m - 1

Do đó: A = x1+ x2- 6x1x= (x+ x2)- 8x1x= m2 - 8(m - 1) = m2 - 8m + 8 = ( m2 - 8m + 16) - 8 = (m - 4)2 - 8 \(\geq\)- 8 với mọi m

Vậy: GTNN của A là -8 <=> m = 4

21 tháng 3 2019

a.)Xét \(\Delta=\left(m-2\right)^2+8m=m^2+4m+4=\left(m+2\right)^2\)(>=0)   (với mọi m)

vậy pt luôn có 2 nghiệm  x1 , x2 với mọi m

b)Theo hệ thức Vi ét ,ta có:

\(\hept{\begin{cases}x_1+x_2=m-2\\x_1\cdot x_2=-2m\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(x_1+x_2\right)^2=\left(m-2\right)^2\\\left(x_1\cdot x_2\right)=-2m\end{cases}\Rightarrow\hept{\begin{cases}\left(x_1^2+x_2^2\right)+-4m=m^2-4m+4\\x_1\cdot x_2=-2m\end{cases}\Rightarrow}x_1^2+x_2^2}=m^2+4\)

Mà \(m^2\ge0\Rightarrow m^2+4\ge4\Rightarrow x_1^2+x_2^2\ge4\)

Vậy gtnn của ........ là 4 khi m=0