Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=4m^2+4m+1-4m^2-4m+24=25>0\)
suy ra phương trình có 2 nghiệm x1, x2 thỏa mãn:
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{2m+1+5}{2}=m+3\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{2m+1-5}{2}=m-2\end{cases}}\)
hoặc ngược lại, x1=m-2 và x2=m+3
Nếu x1=m+3 và x2=m-2 thay vào ta có: \(\left(m-2\right)^2-4\left(m+3\right)=m^2-4m+4-4m-12=m^2-8\ge-8\)
Nếu ngược lại thay vào ta có:
\(\left(m+3\right)^2-4\left(m-2\right)=m^2+6m+9-4m+8=m^2-2m+17=\left(m-1\right)^2+16\ge16\)
Vậy m=0 thì thỏa mãn biểu thức đó nhỏ nhất
a, Đặt \(x^2=t\left(t\ge0\right)\)
Khi đó \(PT< =>t^1+4t-5=0\)
\(< =>t^2-1+4t-4=0\)
\(< =>\left(t-1\right)\left(t+1\right)+4\left(t-1\right)=0\)
\(< =>\left(t-1\right)\left(t+5\right)=0\)
\(< =>\orbr{\begin{cases}t=1\left(tm\right)\\t=-5\left(loai\right)\end{cases}}\)
\(< =>x^2=1< =>\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
Vậy ...
Thay m = 2 vào , ta có :
\(PT< =>x^2-2\left(2+1\right)x+2^2+3.2-4=0\)
\(< =>x^2-6x+6=0\)
\(< =>\left(x^2-6x+9\right)-\sqrt{3}^2=0\)
\(< =>\left(x-3-\sqrt{3}\right)\left(x-3+\sqrt{3}\right)=0\)
\(< =>\orbr{\begin{cases}x=3+\sqrt{3}\\x=3-\sqrt{3}\end{cases}}\)
Ta co:X1^3 +X2 ^3=(x1+ X2 )(X1 2 -X 1X2 +X2 2) x12X22-2=(X1.X2)2_2 Sau do ap dung VIET vao la se tim ra duoc m
Chào ng đẹp
b) VT=x1^3+x2^3=(x1+x2)(x1^2+x2^2-x1x2)=(x1+x2)((x1+x2)^2-3x1x2)
VP=(x1*x2)^2-2
Áp dụng viét thay vô
a)với m=1 ta có:
x2-(2*1+1)x+12+1-6=0
<=>x2-3x+2-6=0
<=>x2-3x-4=0
denta:(-3)2-(-4(1.4))=25
x1,2=\(\frac{3\pm\sqrt{25}}{2}\)=>x=-1 hoặc 4
a) \(\Delta=4m^2-4\left(3m-4\right)=4m^2-12m+16=\left(2m-3\right)^2+7>0\)với mọi m=> pt (1) có nghiệm phân biệt với mọi m
b)áp dụng đ.lí Viét ta có: \(x_1+x_2=2m\); \(x_1.x_2=m^2+3m-4\)
\(x_1^2+x_2^2=\left(x1+x2\right)^2-2x1.x2=4m^2-2\left(m^2+3m-4\right)=4m^2-2m^2-6m+8\)
\(=2\left(m^2+3m-4\right)=2\left[\left(m+\frac{3}{2}\right)^2-4-\frac{9}{4}\right]=2\left[\left(m+\frac{3}{2}\right)^2-\frac{25}{4}\right]\)
A đặt giá trị nhỏ nhất khi m = -3/2