K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2023

\(x^2-\left(m+2\right)x+m=0\left(1\right)\)

Để phương trình (1) có nghiệm thì:

\(\Delta\ge0\Rightarrow\left(m+2\right)^2-4m\ge0\)

\(\Leftrightarrow m^2+4\ge0\) (luôn đúng)

Vậy \(\forall m\) thì phương trình (1) luôn có nghiệm.

Theo định lí Viete cho phương trình (1) ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=m\end{matrix}\right.\)

\(A=x_1^3-\left(m+1\right)x_1^2+mx_1-5m\)

\(=x_1^3-\left(x_1+x_2-1\right)x_1^2+x_1\left(m-5\right)\)

\(=x_1^3-x_1^3-x_1^2x_2+x_1^2+x_1\left(x_1x_2-5\right)\)

\(=-x_1^2x_2+x_1^2+x_1^2x_2-5x_1\)

\(=x_1^2-5x_1=\left(x_1^2-5x_1+\dfrac{25}{4}\right)-\dfrac{25}{4}=\left(x_1-\dfrac{5}{2}\right)^2-\dfrac{25}{4}\ge-\dfrac{25}{4}\)

Vậy \(MinA=-\dfrac{25}{4}\).

 

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0a) Giải phương trình với m = -2b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1c) Tìm các giá trị của m để phương trình trên có nghiệm kép2.Xác định m để mỗi cặp phương trình sau có nghiệm chunga) x2 + mx +2 = 0 và x2 +2x + m = 0b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 03. Cho phương trình (m+1)x2 +4mx +4m - 1 =0a) Giải phương trình với m...
Đọc tiếp

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0

a) Giải phương trình với m = -2

b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1

c) Tìm các giá trị của m để phương trình trên có nghiệm kép

2.Xác định m để mỗi cặp phương trình sau có nghiệm chung

a) x2 + mx +2 = 0 và x2 +2x + m = 0

b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 0

3. Cho phương trình (m+1)x2 +4mx +4m - 1 =0

a) Giải phương trình với m = - 2

b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt

c) Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện x1 = - 2x2

4. Cho phương trình x2 - 2(m+4)x +m2 -8 =0

a) Tìm m để biểu thức A= x12 + x22 - x1 - x2 đạt giá trị nhỏ nhất

b) Tìm m để biểu thức B= x1 + x2 -3x1x2 đạt giá trị lớn nhất

c) Tìm m để biểu thức C= x12 + x22 - x1x2 đạt giá trị lớn nhất

Mong mọi người giúp mình, mình thực sự rất cần. Cảm ơn trước ạ. Làm được bài nào thì cmt ngay giúp mình ạ.

1
18 tháng 2 2021

Bài 1 : a, Thay m = -2 vào phương trình ta được : 

\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)

Ta có : \(\Delta=64-60=4>0\)

Vậy phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)

b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)

\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)

\(1+2\left(m-2\right)+m^2-3m+5=0\)

\(6+2m-4+m^2-3m=0\)

\(2-m+m^2=0\)( giải delta nhé )

\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)

Vậy phương trình vô nghiệm 

c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )

2 tháng 7 2021

Ta có: \(\Delta=\left(-m\right)^2+4.3=m^2+12>0\)

=> pt luôn có 2 nghiệm phân biệt

Theo hệ thức vi-et, ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-3\end{cases}}\)

Theo bài ra, ta có: x12 + x22 = 5m

<=> (x1 + x2)2 - 2x1x2 = 5m

<=> m2 + 6 = 5m

<=> x2 - 5m + 6 = 0

<=> x2 - 2m - 3m + 6 = 0

<=> (m - 2)(m - 3)= 0

<=> \(\orbr{\begin{cases}m=2\\m=3\end{cases}}\)

2 tháng 7 2021
Câu trả lời bằng hình

Bài tập Tất cả

23 tháng 5 2015

2. \(A=\frac{x^2-2x+2011}{x^2}=1-\frac{2}{x}+\frac{2011}{x^2}=\left(\frac{2011}{x^2}-\frac{2}{x}+\frac{1}{2011}\right)+\frac{2000}{2011}=\left(\frac{\sqrt{2011}}{x}-\frac{1}{\sqrt{2011}}\right)^2+\frac{2000}{2011}\)

\(\Leftrightarrow A\ge\frac{2000}{2011}\Rightarrow MinA=\frac{2000}{2011}\Leftrightarrow\frac{\sqrt{2011}}{x}=\frac{1}{\sqrt{2011}}\Leftrightarrow x=2011\)

14 tháng 3 2019

\(x^2-2mx+m-1=0\left(1\right)\)

a. Với m = 2

\(\left(1\right)\Leftrightarrow x^2-4x+3=0\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)

b, Để phương trình có hai nghiệm trái dấu thì:

\(a.c< 0\Leftrightarrow m-1< 0\Leftrightarrow m< 1\)

c, Theo vi - ét ta có:

\(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m-1\end{cases}}\)

\(P=\left(x_1-x_2\right)^2+x_1x_2=\left(x_1+x_2\right)^2-3x_1x_2=4m^2-3\left(m-1\right)\)

\(=4m^2-3m+3=4m^2-2.2.\frac{3}{4}m+\frac{9}{16}+\frac{39}{16}=\left(2m-\frac{3}{4}\right)^2+\frac{39}{16}\ge\frac{39}{16}\)

Dấu bằng xảy ra khi \(2m=\frac{3}{4}\Leftrightarrow m=\frac{3}{8}\)

Thấy số hơi lẻ, bạn xem lại có sai sót gì không.

25 tháng 7 2015

câu 1:

Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)

có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)

\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)

câu 2 mk k bik lm nha 

 

9 tháng 8 2019

Sorry sai đề đề đúng là ntn x1-3x1x2-m(x2+9)=0