Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khi m=1 thì pt sẽ là: x^2+4x-3=0
=>x=-2+căn 7 hoặc x=-2-căn 7
b: Δ=(2m-6)^2-4(m-4)
=4m^2-24m+36-4m+16
=4m^2-28m+52=(2m-7)^2+3>0
=>PT luôn có hai nghiệm pb
c: PT có hai nghiệm trái dấu
=>m-4<0
=>m<4
3:
\(\Delta=\left(2m-1\right)^2-4\left(-2m-11\right)\)
=4m^2-4m+1+8m+44
=4m^2+4m+45
=(2m+1)^2+44>=44>0
=>Phương trình luôn có hai nghiệm pb
|x1-x2|<=4
=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< =4\)
=>\(\sqrt{\left(2m-1\right)^2-4\left(-2m-11\right)}< =4\)
=>\(\sqrt{4m^2-4m+1+8m+44}< =4\)
=>0<=4m^2+4m+45<=16
=>4m^2+4m+29<=0
=>(2m+1)^2+28<=0(vô lý)
1>\(\Delta=b^2-4ac\)
\(=m^2-4\left(2m-1\right)\left(-m+1\right)\)
khai triển ra là được \(\left(3m-2\right)^2\ge0\)
=>phương trình luôn có ít nhất là một nghiệm
2>để phương trình có 2 nghiệm phân biệt thì \(\left(3m-2\right)^2>0\)=>\(3m-2>0\Rightarrow m>\frac{2}{3}\)
còn cần tìm x thì theo công thức mà tìm
3> thế vô mà tìm
2.giải phương trình trên , ta được :
\(x_1=\frac{-m+\sqrt{m^2+4}}{2};x_2=\frac{-m-\sqrt{m^2+4}}{2}\)
Ta thấy x1 > x2 nên cần tìm m để x1 \(\ge\)2
Ta có : \(\frac{-m+\sqrt{m^2+4}}{2}\ge2\) \(\Leftrightarrow\sqrt{m^2+4}\ge m+4\)( 1 )
Nếu \(m\le-4\)thì ( 1 ) có VT > 0, VP < 0 nên ( 1 ) đúng
Nếu m > -4 thì ( 1 ) \(\Leftrightarrow m^2+4\ge m^2+8m+16\Leftrightarrow m\le\frac{-3}{2}\)
Ta được : \(-4< m\le\frac{-3}{2}\)
Tóm lại, giá trị phải tìm của m là \(m\le\frac{-3}{2}\)
a, Thay m = -1 vào phương trình trên ta được
\(x^2+4x-5=0\)
Ta có : \(\Delta=16+20=36\)
\(x_1=\frac{-4-6}{2}=-5;x_2=\frac{-4+6}{2}=1\)
Vậy với m = -1 thì x = -5 ; x = 1
b, Vì x = 2 là nghiệm của phương trình trên nên thay x = 2 vào phương trình trên ta được :
\(4+8+3m-2=0\Leftrightarrow3m=-10\Leftrightarrow m=-\frac{10}{3}\)
Vậy với x = 2 thì m = -10/3
c, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)hay
\(16-4\left(3m-2\right)=16-12m+8=4m+8>0\)
\(\Leftrightarrow8>-4m\Leftrightarrow m>-2\)
Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-4\\x_1x_2=\frac{c}{a}=3m-2\end{cases}}\)
\(\Leftrightarrow x_1+x_2=-4\Leftrightarrow x_1=-4-x_2\)(1)
suy ra : \(-4-x_2+2x_2=1\Leftrightarrow-4+x_2=1\Leftrightarrow x_2=5\)
Thay vào (1) ta được : \(x_1=-4-5=-9\)
Mà \(x_1x_2=3m-2\Rightarrow3m-2=-45\Leftrightarrow3m=-43\Leftrightarrow m=-\frac{43}{3}\)
Ta có: `{(x_1 < 1),(x_2 < 1):}=>(x_1 -1)(x_2 -1) > 0`
Phương trình có `2` nghiệm phân biệt
`=>\Delta > 0`
`<=>[-(m-1)]^2+4m > 0`
`<=>m^2-2m+4m+1 > 0`
`<=>m^2+2m+1 > 0<=>(m+1)^2 > 0`
`=>m+1 ne 0<=>m ne -1`
`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=m-1),(x_1.x_2=c/a=-m):}`
Ta có: `(x_1 -1)(x_2 -1) > 0`
`<=>x_1 .x_2-(x_1 +x_2)+1 > 0`
`<=>-m-m+1+1 > 0`
`<=>m < 1`
Mà `m ne -1`
`=>m < 1,m ne -1`.
\(\Delta=\left(m-1\right)^2-4.\left(-m\right)\)
\(=\left(m^2-2m+1\right)+4m=\left(m+1\right)^2\)
Để pt có 2 nghiệm phân biệt => \(m\ne-1\)
\(\left[{}\begin{matrix}x_1=\dfrac{m-1+m+1}{2}=m\\x_2=\dfrac{m-1-m-1}{2}=-1\end{matrix}\right.\)
Để pt có 2 nghiệm phân biệt bé 1
\(\Rightarrow m< 1\)