Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\Delta\)=(m+1)2 -4.1(2m-3) = m2 +2m +1 - 8m +12 =(m2 -6m+9) +4 =(m-3)2 +4 >0 với mọi m
pt luôn có 2 nghiệm pb với mọi m
b) x =3 là nghiệm
32 -(m+1).3 +2m -3 =0
=>-m +3 =0 => m =3
a.
Phương trình có 2 nghiệm dương pb khi:
\(\left\{{}\begin{matrix}m+2\ne0\\\Delta'=\left(m+1\right)^2-\left(m+2\right)\left(m-4\right)>0\\x_1+x_2=\dfrac{2\left(m+1\right)}{m+2}>0\\x_1x_2=\dfrac{m-4}{m+2}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-2\\4m+9>0\\\dfrac{m+1}{m+2}>0\\\dfrac{m-4}{m+2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne-2\\m>-\dfrac{9}{4}\\\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\\\left[{}\begin{matrix}m>4\\m< -2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m>4\\-\dfrac{9}{4}< m< -2\end{matrix}\right.\)
b.
Pt có 2 nghiệm khi: \(\left\{{}\begin{matrix}m\ne-2\\\Delta'=4m+9\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne-2\\m\ge-\dfrac{9}{4}\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{m+2}\\x_1x_2=\dfrac{m-4}{m+2}\end{matrix}\right.\)
\(3\left(x_1+x_2\right)=5x_1x_2\)
\(\Leftrightarrow\dfrac{6\left(m+1\right)}{m+2}=\dfrac{5\left(m-4\right)}{m+2}\)
\(\Rightarrow6\left(m+1\right)=5\left(m-4\right)\)
\(\Leftrightarrow m=-26< -\dfrac{9}{4}\left(loại\right)\)
Vậy ko tồn tại m thỏa mãn yêu cầu
Mình nghĩ với pt tổng quát: \(ax^2+bx+c=0\) có \(\Delta=b^2-4ac\)
Nếu như vậy thì: \(1.x^2+6x+m\) có \(\Delta=6^2-4m\)chứ?
Riêng mình thì bài này mình dùng delta phẩy cho lẹ:
Lời giải
Để pt \(x^2+6x+m=0\) có 2 nghiệm phân biệt thì:
\(\Delta'=\left(\frac{b}{2}\right)^2-ac=3^2-m>0\)
\(\Leftrightarrow m< 9\)
a/ Bạn tự giải
b/ \(\Delta=\left(2m+3\right)^2+4\left(2m+4\right)>0\)
\(\Leftrightarrow4m^2+20m+25>0\Leftrightarrow\left(2m+5\right)^2>0\)
\(\Rightarrow m\ne-\frac{5}{2}\)
Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+3\\x_1x_2=-2m-4\end{matrix}\right.\)
\(\left|x_1\right|+\left|x_2\right|=5\)
\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1x_2\right|=25\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=25\)
\(\Leftrightarrow\left(2m+3\right)^2+2\left(2m+4\right)+2\left|2m+4\right|-25=0\)
\(\Leftrightarrow m^2+4m-2+\left|m+2\right|=0\)
\(\Leftrightarrow\left(m+2\right)^2+\left|m+2\right|-6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|m+2\right|=-3\left(l\right)\\\left|m+2\right|=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m=0\\m=-4\end{matrix}\right.\)
Nguyễn Việt Lâm này, bạn giải câu a có bị số xấu không?
Để pt có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(2m+5\right)^2-4\left(2m+1\right)\\x_1+x_2=2m+5>0\\x_1x_2=2m+1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m^2+12m+21>0\\m>-\frac{5}{2}\\m>-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow m>-\frac{1}{2}\)
Đặt \(A=\left|\sqrt{x_1}-\sqrt{x_2}\right|>0\)
\(\Leftrightarrow A^2=x_1+x_2-2\sqrt{x_1x_2}\)
\(A^2=2m+5-2\sqrt{2m+1}\)
\(A^2=2m+1-2\sqrt{2m+1}+1+3\)
\(A^2=\left(\sqrt{2m+1}-1\right)^2+3\ge3\)
\(\Rightarrow A\ge\sqrt{3}\Rightarrow A_{min}=\sqrt{3}\) khi \(\sqrt{2m+1}=1\Rightarrow m=0\)
a) thay m=1 vào phương trình ta được phương trình:
\(x^2-2\left(1-1\right)x-2.1=0\\ \Leftrightarrow x^2-2x-2=0\\ \Delta=b^2-4ac=\left(-2\right)^2-4.1.\left(-2\right)=12\)
vậy phương trình có hai nghiệm phân biệt
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{2+\sqrt{12}}{2}=1+\sqrt{3}\)
\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{2-\sqrt{12}}{2}=1-\sqrt{3}\)
a. Bạn tự giải
b.
\(\Delta=\left(3m-1\right)^2-4\left(2m^2+2m\right)=m^2-14m+1\)
Pt có 2 nghiệm pb khi \(m^2-14m+1>0\) (1)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=3m-1\\x_1x_2=2m^2+2m\end{matrix}\right.\)
\(\left|x_1-x_2\right|=2\Leftrightarrow\left(x_1-x_2\right)^2=4\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)
\(\Leftrightarrow\left(3m-1\right)^2-4\left(2m^2+2m\right)=4\)
\(\Leftrightarrow m^2-14m-3=0\Rightarrow m=7\pm2\sqrt{13}\) (đều thỏa mãn (1))
/\(\sqrt{x}_1-\sqrt{x}_2\) /