K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2016

TỪ GT TA CÓ X1=2X2 HOẶC X1=-2X2

VÌ HỆ SỐ  a*c<0 MỌI m THỎA MÃN

THEO HỆ THỨC VIET X1+X2=3

XÉT TRƯỜNG HỢP X1=2X2  \(\Rightarrow X_2=1;X_1=2\Rightarrow-2m^2=2\Rightarrow\) KHÔNG CÓ m

cmtt  VỚI X1=-2X2   m=-3;3

6 tháng 4 2017

\(x^2-2mx+m^2-m+4=0\)

a/ ( a = 1; b = -2m; c = m^2 - m + 4 )

\(\Delta=b^2-4ac\)

   \(=\left(-2m\right)^2-4.1.\left(m^2-m+4\right)\)

   \(=4m^2-4m^2+4m-16\)   

    \(=4m-16\)

Để pt luôn có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow4m-16\ge0\Leftrightarrow m\ge4\)

b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=2m\\P=x_1x_2=\frac{c}{a}=m^2-m+4\end{cases}}\)

Ta có: \(A=x_1^2+x_2^2-x_1x_2\)

             \(=S^2-2P-P\)

             \(=S^2-3P\)

             \(=\left(2m\right)^2-3\left(m^2-m+4\right)\)

             \(=4m^2-3m^2+3m-12\)

              \(=m^2+3m-12\)

               \(=m^2+3m+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2-12\)

                \(=\left(m+\frac{3}{2}\right)^2-\frac{57}{4}\ge-\frac{57}{4}\)

Vậy: \(MinA=-\frac{57}{4}\Leftrightarrow\left(m+\frac{3}{2}\right)^2=0\Leftrightarrow m=-\frac{3}{2}\)

6 tháng 4 2017

a)) Δ=b2-4ac
Δ=(-2m)2-4(m2-m+4)
Δ=4m-16
 để pt có ng khi Δ > 0 & Δ=0
 => m> hoặc = 4
 

16 tháng 4 2017
1, (delta)' = (-m)^2 - (m^2 - 4) = m^2 - m^2 + 4 = 4 => Ptr (1) luôn có nghiệm với mọi m 2, Với mọi m ptr (1) có 2 nghiệm x1,x2 Theo hộ thức Vi-ét ta có x1 + x2 = - b/a = -(-2m)/1 = 2m x1*x2 = c/a =(m^2 - 4)/1= m^2 - 4 Theo bài ra ta có x1^2 + x2^2 = 26 <=> (x1+x2)^2 - 2*x1*x2 = 26 <=> (2m)^2 - 2*(m^2 - 4) = 26 <=> 4m^2 - 2m^2 - 8 = 26 <=> 2m^2 - 8 - 26 = 0 <=> 2(m^2 - 17) = 0 <=> m^2 - 17 = 0 <=> (m - căn17)(m + căn17) = 0 <=> m = căn17 hoặc m = -(căn17) (Sr ko nhìu tg nên mk ko sd kí hiệu)
2 tháng 6 2019

âu này làm như bt thôi

tthay nghiệm vào rồi tìm m

sau đó thay m vào tìm o còn lại

b, tìm đenta

=> đenta >=0

=> theo hệ thức viet

=> thay vào ot cần tìm m

hok tốt 

mik nha

5 tháng 7 2020

Mình

không

bít

làm!

5 tháng 7 2020

Mình

không

bít 

làm!                                                     

31 tháng 12 2017

ta có phương trình x^2 +3x +m =0 

nên để pt có 2 nghiệm phân biệt thì 9 - 4m > 0 hay m <9/4

theo Viét  nếu x1 và x2 là 2 nghiệm của pt thì 

x1 +x2 =-3 (1)và

x1*x2=m  => 2x1*x2 =2m (2)

=> x1^2 +x2^2 +2m = (x1 +x2 )^2 (từ (1) và (2) )( cái hằng đẳng thức chắc bạn phải biết r đúng ko )

mà x1 +x2 =-3 ,,,x1^2 +x2^2 = 31 nên ta có

31 +2m =9 

m = -11

31 tháng 12 2017

vưa nãy mình -   nhầm 31 + 2m =9  thì m= -12 mới phải (hi  hi )

21 tháng 3 2019

a.)Xét \(\Delta=\left(m-2\right)^2+8m=m^2+4m+4=\left(m+2\right)^2\)(>=0)   (với mọi m)

vậy pt luôn có 2 nghiệm  x1 , x2 với mọi m

b)Theo hệ thức Vi ét ,ta có:

\(\hept{\begin{cases}x_1+x_2=m-2\\x_1\cdot x_2=-2m\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(x_1+x_2\right)^2=\left(m-2\right)^2\\\left(x_1\cdot x_2\right)=-2m\end{cases}\Rightarrow\hept{\begin{cases}\left(x_1^2+x_2^2\right)+-4m=m^2-4m+4\\x_1\cdot x_2=-2m\end{cases}\Rightarrow}x_1^2+x_2^2}=m^2+4\)

Mà \(m^2\ge0\Rightarrow m^2+4\ge4\Rightarrow x_1^2+x_2^2\ge4\)

Vậy gtnn của ........ là 4 khi m=0

10 tháng 5 2015

Cái này lập \(\Delta^'\) rroif xét delta theo 3 trường hợp ><=0 nếu trường hợp nào cso nghiệm thì lấy câu b thì dùng Viet thôi

5 tháng 5 2016

a) Ta có đen ta phẩy  

=(-(m-1)2)-m2-m+1

=m2+2m+1-m2-m+1

=m+2

Để phương trình có nghiệm thì đen ta  lớn hơn hoặc bằng 0 <-> m+2 lớn hơn hoặc bằng 0 -> m lớn hơn hoặc bằng -2

b) vì đến ta > 0 (phần a) nên phương trình có 2 nghiệm x1 ; x2 

áp dụng hệ thức vi ét vào phương trình x2-2(m+1)x+m2+m-1 ta được

x1+x2=2m+2 (1)

x1*x2=m2+m-1 (2)

Mặt khác : ta có x12+x22=(x12+2x1x2+x22)-2x1x2 (3)

x12+x22=(x1+x2)2-2x1x2

Thay (1),(2) vào (3) ta được :x12+x22=(2m+2)2-2*(m2+m-1)=0

<-> 4m2+8m+4-2m2-2m+2=0

<-> 2m2+6m+6=0

ta có đen ta = 36-48=-12

Do đen ta < 0 nên phương trình vô nghiệm

Vì phương trình vô nghiệm nên ko tồn tại 2 nghiệm x1 và x2

đen ta kí hiệu là hình tam giác