Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt :
\(x^2=t\) => t >0
Phương trình tương đương :
\(t^2+2mt+4=0\) (*)
Để phương trình trên co 4 nghiệm phân biệt thì (*) phải có 2 nghiệm dương
=>| Điều kiện :
\(\Delta'=m-4>0\)
\(\Rightarrow m>4\)
Theo hệ thức Vi-ét :
\(\left\{{}\begin{matrix}x_1+x_2+x_3+x_4=-\dfrac{b}{a}=0\\x_1x_2+x_1x_3+x_1x_4+x_2x_3+x_2x_4=\dfrac{c}{a}=m\\x_1x_2x_3+x_1x_2x_4+x_1x_3x_4+x_2x_3x_4=-\dfrac{d}{a}=0\\x_1x_2x_3x_4=\dfrac{e}{a}=4\end{matrix}\right.\)
Mũ 4 phương trình đầu tiên lên rồi áp vào
\(x_1^4+x_2^4+x_3^4+x^4_4=32\) , sử dụng các phương trình bên dưới nữa để giải ra m là được
Xét \(x^2-\left(2m+1\right)x-3=0\left(1\right)\)
PT (1) có a.c=\(1\cdot\left(-3\right)=-3< 0\)
=> PT (1) luôn có 2 nghiệm phân biệt trái dấu với mọi m
Mà \(x_1< x_2\left(gt\right)\)nên x1<0 và x2>0 => \(\hept{\begin{cases}\left|x_1\right|=-x_1\\\left|x_2\right|=x_2\end{cases}}\)
Áp dụng hệ thức Vi-et ta có \(x_1+x_2=2m+1\)
Theo bài ra \(\left|x_1\right|-\left|x_2\right|=5\Rightarrow-x_1-x_2=5\Leftrightarrow x_1+x_2=-5\Leftrightarrow2m+1=-5\Leftrightarrow m=-3\)
a.
Ta co:
\(\orbr{\begin{cases}x^2-2x-3=0\left(1\right)\left(x\ge0\right)\\x^2+2x-3=0\left(2\right)\left(x< 0\right)\end{cases}}\)
(1)\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\left(l\right)\\x=3\left(n\right)\end{cases}}\)
(2)\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(l\right)\\x=-3\left(n\right)\end{cases}}\)
b.
Ta lai co:
\(\orbr{\begin{cases}x^2-2x+1-4a^2=0\left(3\right)\left(x\ge0\right)\\x^2+2x+1-4a^2=0\left(4\right)\left(x< 0\right)\end{cases}}\)
Xet (3)
De phuong trinh dau co 4 nghiem thi PT(3) co nghiem
\(\Rightarrow\Delta^`>0\)
\(\Leftrightarrow4a^2>0\)
\(\Leftrightarrow a>0\)
\(\Rightarrow x_1=1+2a;x_2=1-2a\)
Tuong tu
(4)
\(a>0\)
\(\Rightarrow x_3=-1+2a;x_4=-1-2a\)
\(\Rightarrow S=\left(1+2a\right)^2+\left(1-2a\right)^2+\left(-1+2a\right)^2+\left(-1-2a\right)^2\)
\(=2\left(1+2a\right)^2+2\left(1-2a\right)^2\)
\(\Rightarrow S< +\infty\)
Đặt \(x^2=t\ge0\) pt trở thành: \(t^2-2\left(m-3\right)t-2m-24=0\) (1)
Để pt đã cho có 4 nghiệm pb thì (1) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-4m+33>0\\t_1+t_2=2\left(m-3\right)>0\\t_1t_2=-2m-24>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>3\\m< -12\end{matrix}\right.\)
Không tồn tại m thỏa mãn yêu cầu đề bài