K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 8 2020

Đặt \(x^2=t\ge0\) pt trở thành: \(t^2-2\left(m-3\right)t-2m-24=0\) (1)

Để pt đã cho có 4 nghiệm pb thì (1) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-4m+33>0\\t_1+t_2=2\left(m-3\right)>0\\t_1t_2=-2m-24>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>3\\m< -12\end{matrix}\right.\)

Không tồn tại m thỏa mãn yêu cầu đề bài

16 tháng 4 2016

khó thế

23 tháng 2 2019

Đặt :

\(x^2=t\) => t >0

Phương trình tương đương :

\(t^2+2mt+4=0\) (*)

Để phương trình trên co 4 nghiệm phân biệt thì (*) phải có 2 nghiệm dương

=>| Điều kiện :

\(\Delta'=m-4>0\)

\(\Rightarrow m>4\)

Theo hệ thức Vi-ét :

\(\left\{{}\begin{matrix}x_1+x_2+x_3+x_4=-\dfrac{b}{a}=0\\x_1x_2+x_1x_3+x_1x_4+x_2x_3+x_2x_4=\dfrac{c}{a}=m\\x_1x_2x_3+x_1x_2x_4+x_1x_3x_4+x_2x_3x_4=-\dfrac{d}{a}=0\\x_1x_2x_3x_4=\dfrac{e}{a}=4\end{matrix}\right.\)

Mũ 4 phương trình đầu tiên lên rồi áp vào

\(x_1^4+x_2^4+x_3^4+x^4_4=32\) , sử dụng các phương trình bên dưới nữa để giải ra m là được

14 tháng 5 2020

Xét \(x^2-\left(2m+1\right)x-3=0\left(1\right)\)

PT (1) có a.c=\(1\cdot\left(-3\right)=-3< 0\)

=> PT (1) luôn có 2 nghiệm phân biệt trái dấu với mọi m

Mà \(x_1< x_2\left(gt\right)\)nên x1<0 và x2>0 => \(\hept{\begin{cases}\left|x_1\right|=-x_1\\\left|x_2\right|=x_2\end{cases}}\)

Áp dụng hệ thức Vi-et ta có \(x_1+x_2=2m+1\)

Theo bài ra \(\left|x_1\right|-\left|x_2\right|=5\Rightarrow-x_1-x_2=5\Leftrightarrow x_1+x_2=-5\Leftrightarrow2m+1=-5\Leftrightarrow m=-3\)

1 tháng 1 2020

a.

Ta co:

\(\orbr{\begin{cases}x^2-2x-3=0\left(1\right)\left(x\ge0\right)\\x^2+2x-3=0\left(2\right)\left(x< 0\right)\end{cases}}\)

(1)\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\left(l\right)\\x=3\left(n\right)\end{cases}}\)

(2)\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(l\right)\\x=-3\left(n\right)\end{cases}}\)

b.

Ta lai co:

\(\orbr{\begin{cases}x^2-2x+1-4a^2=0\left(3\right)\left(x\ge0\right)\\x^2+2x+1-4a^2=0\left(4\right)\left(x< 0\right)\end{cases}}\)

Xet (3)

De phuong trinh dau co 4 nghiem thi PT(3) co nghiem

\(\Rightarrow\Delta^`>0\)

\(\Leftrightarrow4a^2>0\)

\(\Leftrightarrow a>0\)

\(\Rightarrow x_1=1+2a;x_2=1-2a\)

Tuong tu

(4)

\(a>0\)

\(\Rightarrow x_3=-1+2a;x_4=-1-2a\)

\(\Rightarrow S=\left(1+2a\right)^2+\left(1-2a\right)^2+\left(-1+2a\right)^2+\left(-1-2a\right)^2\)

\(=2\left(1+2a\right)^2+2\left(1-2a\right)^2\)

\(\Rightarrow S< +\infty\)