\(x^3-\left(m+2\right)x^2+3mx-1=0\)có 3 nghiệm thực x1; x
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 4 2019

Theo định lý Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2+x_3=m+2\\x_1x_2+x_1x_3+x_2x_3=3m\\x_1x_2x_3=1\end{matrix}\right.\)

\(P=x_1^2+x_2^2+x_3^2=\left(x_1+x_2+x_3\right)^2-2\left(x_1x_2+x_1x_3+x_2x_3\right)\)

\(P=\left(m+2\right)^2-6m=m^2-2m+4\)

\(P=\left(m-1\right)^2+3\ge3\)

\(\Rightarrow P_{min}=3\) khi \(m=1\)

NV
4 tháng 5 2019

Theo Viet ta có \(\left\{{}\begin{matrix}x_1+x_2=-\frac{3m}{2}\\x_1x_2=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(P=\left(x_1+x_2\right)^2-4x_1x_2+\left(\frac{x_1+x_2+x_1x_2\left(x_1+x_2\right)}{x_1x_2}\right)^2\)

\(P=\frac{9m^2}{4}+2\sqrt{2}+\left(\frac{-\frac{3m}{2}-\frac{\sqrt{2}}{2}\left(-\frac{3m}{2}\right)}{-\frac{\sqrt{2}}{2}}\right)^2\)

\(P=\frac{9m^2}{4}+2\sqrt{2}+\left(\frac{27-8\sqrt{2}}{4}\right)m^2\)

\(P=\left(\frac{18-9\sqrt{2}}{2}\right)m^2+2\sqrt{2}\ge2\sqrt{2}\)

\(\Rightarrow P_{min}=2\sqrt{2}\) khi \(m=0\)

19 tháng 10 2019

PT

\(\Leftrightarrow\left(x+1\right)\left(x-1\right)\left(x+3\right)\left(x+5\right)=m\)

\(\Leftrightarrow\left(x^2+4x+3\right)\left(x^2+4x-5\right)=m\)

\(\Leftrightarrow\left(x^2+4x-1+4\right)\left(x^2+4x-1-4\right)=m\)

\(\Leftrightarrow\left(x^2+4x-1\right)^2-16=m\)

\(\Leftrightarrow\left(x^2+4x-1\right)^2=m+16\) \(\left(DK:m\ge-16\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+4x-1=\sqrt{m+16}\left(1\right)\\x^2+4x-1=-\sqrt{m+16}\left(2\right)\end{cases}}\)

PT(1)

\(\Leftrightarrow x^2+4x-1-\sqrt{m+16}=0\)

Ta co:

\(\Delta^`=2^2-1.\left(-1-\sqrt{m+16}\right)=5+\sqrt{m+16}>0\)

\(\Rightarrow\hept{\begin{cases}x_1=-2+\sqrt{5+\sqrt{m+16}}\\x_2=-2-\sqrt{5+\sqrt{m+16}}\end{cases}}\)

PT(2)

\(\Leftrightarrow x^2+4x-1+\sqrt{m+16}=0\)

Ta lai co:

\(\Delta^`=2^2-1.\left(-1+\sqrt{m+16}\right)=5-\sqrt{m+16}\)

De PT co 4 nghiem phan biet thi PT(1) va PT(2) co 2 nghiem phan bet

Suy ra PT(2) co 2 nghiem phan biet khi 

\(5-\sqrt{m+16}>0\)

\(\Leftrightarrow m< 9\)

\(\Rightarrow\hept{\begin{cases}x_3=-2+\sqrt{5-\sqrt{m+16}}\\x_4=-2-\sqrt{5-\sqrt{m+16}}\end{cases}}\)

Ta lai co:

\(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_4}+\frac{1}{x_5}=\frac{x_1+x_2}{x_1x_2}+\frac{x_4+x_5}{x_4x_5}=\frac{4}{1+\sqrt{m+16}}+\frac{4}{1-\sqrt{m+16}}\text{ }=-\frac{8}{15+m}\)\(\left(DK:m\ne-15\right)\)

Ma \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)

\(\Leftrightarrow-\frac{8}{m+15}=-1\)

\(\Leftrightarrow m=-7\)

Vay de PT \(\left(x^2-1\right)\left(x+3\right)\left(x+5\right)=m\)co 4 gnhiem phan biet thoa man 

\(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)thi m=-7

18 tháng 3 2018

đen ta = (2m-1)^2 - 4(m^2-1) = 4m^2 - 4m + 1 - 4m^2 + 4 = 5-4m >= 0 => m =< 5/4

p = (x1)^2 + (x2)^2 = (x1+x2)^2 - 2x1x2 = (2m-1)^2 - 2.(m^2-1) = 4m^2 - 4m + 1 - 2m^2 + 2 = 2m^2 - 4m + 2 + 1 = 2(m-1)^2 + 1 >= 1

dấu "=" xảy ra khi m = 1 (thõa mãn =< 5/4)

mậy minP = 1 khi m = 1

4 tháng 4 2022

Phương trình 2 nghiệm phân biệt khi 

\(\Delta=\left(1-m\right)^2-4\left(-m\right).1=\left(m+1\right)^2>0\)

\(\Leftrightarrow m\ne-1\)

Hệ thức Vière : \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-m\end{cases}}\)

Khi đó \(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\)

<=> \(-x_1x_2+5\left(x_1+x_2\right)\ge-21\)

<=> \(-\left(-m\right)+5\left(m-1\right)\ge-21\)

\(\Leftrightarrow6m\ge-16\Leftrightarrow m\ge-\frac{8}{3}\)

Kết hợp điều kiện => \(\hept{\begin{cases}m\ge-\frac{8}{3}\\m\ne-1\end{cases}}\)thì thỏa mãn bài toán 

NV
5 tháng 4 2022

\(\Delta=\left(1-m\right)^2+4m=\left(m+1\right)^2>0\Rightarrow m\ne-1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-m\end{matrix}\right.\)

\(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\)

\(\Leftrightarrow5\left(x_1+x_2\right)-x_1x_2\ge-21\)

\(\Leftrightarrow5\left(m-1\right)+m\ge-21\)

\(\Leftrightarrow m\ge-\dfrac{8}{3}\)

Kết hợp điều kiện ban đầu ta được: \(\left\{{}\begin{matrix}m\ne-1\\m\ge-\dfrac{8}{3}\end{matrix}\right.\)

26 tháng 4 2019

\(\Delta'=\left(-m\right)^2-2m^2+1\)

=\(m^2-2m^2+1\)

=\(-m^2+1\) \(\Rightarrow-m^2+1>0\Leftrightarrow m< 1\)

theo vi-et ta có \(x_1+x_2=-2m\)

\(x_1.x_2=2m^2-1\)

theo đề bài ta có \(\left(x_1\right)^3+\left(x_2\right)^3-\left(x_1\right)^2-\left(x_2\right)^2=-2\)

\(\Leftrightarrow\)\(\left(x_1+x_2\right).\left(x_1^2-x_1.x_2+x_2^2\right)\) = 4

\(\Leftrightarrow\left(x_1+x_2\right).[\left(x_1+x_2\right)^2-3x_1.x_2]\) =4

\(\Leftrightarrow-2m.[\left(-2m\right)^2-3.\left(2m^2-1\right)]\)=4

\(\Leftrightarrow-2m.\left(4m^2-6m^2+3\right)\)=4

\(\Leftrightarrow-2m.\left(-2m^2-3\right)\) =4

\(\Leftrightarrow4m^2+6m\) =4

\(\Leftrightarrow4m^2+6m-4=0\)

\(\Delta=6^2-4.4.\left(-4\right)=36+64=100>0\) =>\(\sqrt{\Delta}=\sqrt{100}=50\)

phương trình có 2 ngiệm \(x_1=\frac{11}{2}\),\(x_2=-7\)

với \(x_2=-7\) thỏa mãn đk

26 tháng 4 2019

bài này thì mk ko chắc đúng ko từ \(-2m.\left(-2m^2-3\right)\) trở lên là đúng

NV
27 tháng 4 2019

Gọi \(a=x_1\)\(b=x_2\) gõ cho lẹ

\(\Delta'=m^2-2m^2+1=1-m^2\ge0\Rightarrow-1\le m\le1\)

Theo Viet ta có: \(\left\{{}\begin{matrix}a+b=2m\\ab=2m^2-1\end{matrix}\right.\)

\(A=a^3+b^3-\left(a^2+b^2\right)=\left(a+b\right)^3-3ab\left(a+b\right)-\left(a+b\right)^2+2ab\)

\(A=8m^3-6m\left(2m^2-1\right)-4m^2+2\left(2m^2-1\right)\)

\(A=-4m^3+6m-2=-2\)

\(\Leftrightarrow4m^3-6m=0\)

\(\Leftrightarrow2m\left(2m^2-3\right)=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-\frac{\sqrt{6}}{2}< -1\left(l\right)\\m=\frac{\sqrt{6}}{2}>1\left(l\right)\end{matrix}\right.\)