K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2021

Phương trình đã cho có hai nghiệm phân biệt khi

\(\Delta'=\left(m+1\right)^2-\left(m^2+2\right)=2m-1>0\Leftrightarrow m>\dfrac{1}{2}\)

Theo định lí Viet: \(x_1+x_2=2m+2;x_1x_2=m^2+2\)

Khi đó \(x_1^3+x_2^3=2x_1x_2\left(x_1+x_2\right)\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-5x_1x_2\left(x_1+x_2\right)=0\)

\(\Leftrightarrow\left(2m+2\right)^3-5\left(m^2+2\right)\left(2m+2\right)=0\)

\(\Leftrightarrow m^3-7m^2-2m+6=0\)

\(\Leftrightarrow\left(m+1\right)\left(m^2-8m+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-1\left(l\right)\\m=4\pm\sqrt{10}\left(tm\right)\end{matrix}\right.\)

Ta có: \(\Delta=4m^2-8m+1\)

Để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\) \(\Leftrightarrow\left[{}\begin{matrix}x< \dfrac{2-\sqrt{3}}{2}\\x>\dfrac{2+\sqrt{3}}{2}\end{matrix}\right.\)

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=1-2m\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.\)

Ta lập được HPT \(\left\{{}\begin{matrix}x_1+x_2=1-2m\\2x_1=x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x_1=1-2m\\x_2=2x_1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{1-2m}{3}\\x_2=\dfrac{2-4m}{3}\end{matrix}\right.\)

Kết hợp với (2), ta được:

\(\dfrac{8m^2-12m+2}{9}=m\) \(\Leftrightarrow...\) 

 

 

 

 

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Lời giải:

Để pt có 2 nghiệm thì: 

\(\left\{\begin{matrix} m\neq 0\\ \Delta'=(m+1)^2-m(m+5)=1-3m\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ m\leq\frac{1}{3}\end{matrix}\right.(1)\)

Áp dụng định lý Viet:

\(\left\{\begin{matrix} x_1+x_2=\frac{2(m+1)}{m}\\ x_1x_2=\frac{m+5}{m}\end{matrix}\right.\)

Để $x_1< 0< x_2$

$\Leftrightarrow x_1x_2< 0$

$\Leftrightarrow \frac{m+5}{m}< 0$

$\Leftrightarrow -5< m< 0(2)$

$x_1< x_2< 2$

\(\Leftrightarrow \left\{\begin{matrix} (x_1-2)(x_2-2)>0\\ x_1+x_2<4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_1x_2-2(x_1+x_2)+4>0\\ x_1+x_2<4\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \frac{m+1}{m}>0\\ \frac{1-m}{m}< 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m>1\\ m< -1\end{matrix}\right.(3)\)

Từ $(1);(2);(3)$ suy ra $-5< m< -1$

 

22 tháng 12 2021

a: Để phương trình có hai nghiệm trái dấu thì m+2<0

hay m<-2

NV
27 tháng 7 2021

Phương trình có 2 nghiệm khi \(\Delta'=m^2-4\ge0\Rightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=4\end{matrix}\right.\)

\(\left(\dfrac{x_1}{x_2}\right)^2+\left(\dfrac{x_2}{x_1}\right)^2=3\)

\(\Rightarrow\left(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}\right)^2-2=3\)

\(\Rightarrow\left(\dfrac{x_1^2+x_2^2}{x_1x_2}\right)^2=5\)

\(\Rightarrow\left(\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{4}\right)^2=5\)

\(\Rightarrow\left(m^2-2\right)^2=5\)

\(\Rightarrow m^2=2+\sqrt{5}\)

\(\Rightarrow m=\pm\sqrt{2+\sqrt{5}}\)

27 tháng 7 2021

tại sao lại có -2 ạ

7 tháng 5 2020

1/ \(x^2-2\left(m-1\right)x+m^2-3m=0\)

\(\Delta'>0\Leftrightarrow m^2-2m+1-m^2+3m>0\Leftrightarrow m>-1\)

\(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)

\(x^2_1+x^2_2\le8\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\le8\Leftrightarrow\left(2m-2\right)^2-2\left(m^2-3m\right)\le8\)

\(\Leftrightarrow4m^2-8m+4-2m^2+6m\le8\)

\(\Leftrightarrow2m^2-2m-4\le0\Leftrightarrow-1\le m\le2\)

\(\Rightarrow-1< m\le2\)

7 tháng 5 2020

Câu 1b, 2, 3 làm tương tự

Câu 4:

\(bpt>0,\forall m\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\Delta'< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\4m^2-\left(m+1\right)\left(-3m-5\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow7m^2+8m+5< 0\left(lđ,\forall m\right)\)

\(\Rightarrow m>-1\)

NV
30 tháng 5 2020

a/ Bạn tự giải

b/ \(\Delta=m^2-8\left(m-2\right)=m^2-8m+16=\left(m-4\right)^2\ge0;\forall m\)

\(\Rightarrow\) Pt luôn có nghiệm với mọi m

c/ Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=2m-4\end{matrix}\right.\)

Kết hợp Viet và điều kiện đề bài ta được:

\(\left\{{}\begin{matrix}2x_1+3x_2=5\\x_1+x_2=m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x_1+3x_2=5\\3x_1+3x_2=3m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=3m-5\\x_2=-2m+5\end{matrix}\right.\)

Thế vào \(x_1x_2=2m-4\) được:

\(\left(3m-5\right)\left(-2m+5\right)=2m-4\)

\(\Leftrightarrow6m^2-23m+21=0\Rightarrow\left[{}\begin{matrix}m=\frac{7}{3}\\m=\frac{3}{2}\end{matrix}\right.\)