K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Thay m=-2 vào phương trình, ta được:

\(x^2-\left(-x\right)-2=0\)

\(\Leftrightarrow x^2+x-2=0\)

a=1; b=1; c=-2

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{-2}{1}=-2\)

a: Khi m=1 thì phương trình sẽ là x^2-2x-3=0

=>x=3 hoặc x=-1

b: Δ=(m+1)^2-4(m-4)

=m^2+2m+1-4m+16

=m^2-2m+17

=(m-1)^2+16>=16>0

=>Phương trình luôn có hai nghiệm phân biệt

x1+x2=m+1;x2x1=m-4

(x1^2-mx1+m)(x2^2-mx2+m)=2

 

=>(x1*x2)^2-m*x2*x1^2+m*x1^2-m*x1*x2^2+m*x1*x2-m^2*x1+m*x2^2-m^2*x2+m^2=2

=>(x1*x2)^2-m*x1*x2(x1+x2)+mx1^2+m*(m-4)-m^2*x1+m*x2^2-m^2*x2+m^2=2

=>(m-4)^2-m*(m-4)(m+1)+m(m-4)-m^2(x1+x2)+m*(x1^2+x2^2)+m^2=2

=>(m-4)^2-m(m^2-3m-4)+m^2-4m-m^2(m+1)+m*[(m+1)^2-2(m-4)]+m^2=2

=>m^2-8m+16-m^3+3m^2+4m+m^2-4m-m^3-m^2+m^2+m[m^2+2m+1-2m+8]=2

=>-2m^3+3m^2-8m+16+m^3+9m-2=0

=>-m^3+3m^2+m+14=0

=>\(m\simeq4,08\)

4 tháng 4 2016

dùng viet để giải

4 tháng 4 2016

dùng đen ta phẩy để giải pt. 

kết quả khi m >  \(\frac{5}{6}\)thì pt có nghiệm

theo vi-ét ta có: x1 + x2 = \(\frac{-b}{a}=\frac{2\left(m-2\right)}{1}=2\left(m-2\right)\)(1)

                                x1 . x2 = \(\frac{c}{a}=\frac{m^2+2m-3}{1}=m^2+2m-3\)(2)

theo đầu bài ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)

                       <=> \(\frac{x_2+x_1}{x_1.x_2}=\frac{x_1+x_2}{5}\)(3)

thay (1) và (2) vào (3) r tính m. kết quả khi m=2 thì pt có nghiệm thỏ mãn đk đó.

17 tháng 6 2022

ko biết làm

4 tháng 7 2020

Theo hệ thức Viet : \(\hept{\begin{cases}x_1x_2=\frac{c}{a}=2m+1\\x_1+x_2=-\frac{b}{a}=6\end{cases}}\) 

Khi đó : \(x_1^2\left(x_2+1\right)+x_2^2\left(x_1+1\right)>0\)

\(< =>x_1^2x_2+x_1^2+x_2^2x_1+x_2^2>0\)

\(< =>\left(x_1x_2\right)\left(x_1+x_2\right)+\left(x_1+x_2\right)^2-2x_1x_2>0\)

\(< =>6\left(2m+1\right)+6^2-2\left(2m+1\right)>0\)

\(< =>12m+6+36-4m-2>0\)

\(< =>8m+40>0\)\(< =>m>-\frac{40}{8}=-5\)

Vậy để m thỏa mãn đk trên thì \(m>-5\)

mình sửa đề trên là > 0 nhé 

Xét phương trình : \(x^2-\left(2m+3\right)x+m=0\)

Ta có : \(\Delta=\left[-\left(2m+3\right)\right]^2-4.1.m\)

\(=4m^2+12m+9-4m=4m^2+8m+9\)

\(=\left(2m+2\right)^2+5\)

Có : \(\left(2m+2\right)\ge0\forall m\Rightarrow\left(2m+2\right)^2+5>0\)

\(\Rightarrow\)phương trình luôn có hai nghiệm phân biệt \(x_1\)\(x_2\)

Theo hệ thức VI-ÉT ta có :

\(\hept{\begin{cases}x_1+x_2=2m+3\\x_1.x_2=m\end{cases}\left(^∗\right)}\)

Có : \(K=x^2_1+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2\)

Thay \(\left(^∗\right)\)vào K ta được :

\(K=\left(2m+3\right)^2-2m\)

\(\Leftrightarrow K=4m^2+12m+9-2m\)

\(\Leftrightarrow K=4m^2+10m+9\)

\(\Leftrightarrow K=\left(2m+\frac{5}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)

Vậy \(K_{min}=\frac{11}{4}\) đạt đc khi \(2m+\frac{5}{2}=0\Leftrightarrow m=-\frac{5}{4}\)

DD
14 tháng 5 2021

\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)

nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\)

Theo định lí Viete: 

\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)

\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)

\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)

Dấu \(=\)xảy ra khi \(m=-1\)