K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2021

Ta có Δ=[-2(m-1)]^2-4.(m-3)=(2m-2)^2-4m+12

=4m^2-8m+4-4m+12=4m^2-12m+16

=4(m^2-3m+4)=4.[m^2-2.3/2+(3/2)^2-(3/2)^2+4]

=4.[(m-3/2)^2+7/4]>0(với mọi m)=>Δ>0

Vậy phương trình có 2 nghiệm phân biệt với mọi m

=> x1=[2m-2+2.√(m-3)^2+7/4]/2(m-2)=[m-1+√(m-3)^2+7/4]/(m-2)

x2=[m-1-√(m-3)^2+7/4]/(m-2)

3 tháng 5 2021

cái này bạn áp dụng \(\Delta^'\) đk

19 tháng 5 2023

33(x1
+x22)
2x11x2
=
3

4 tháng 6 2017
  1. \(\Delta^'=m^2-\left(m-1\right)\left(m+1\right)=m^2-m^2+1=1>0\)vậy phương trình luôn có hai nghiệm với mọi \(m\ne1\)
  2. Theo viet ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m+1\end{cases}}\)\(\Rightarrow m+1=5\Rightarrow m=4\Rightarrow x_1+x_2=2m=2.4=8\)
  3. từ hệ thức viet ta khử m được hệ thức liên hệ giữa 2 nghiệm ko phụ thuộc m: thấy \(x_1+x_2-2x_2x_1=2m-2\left(m+1\right)=-2\)
  4. \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=-\frac{5}{2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=-\frac{5}{2}\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=-\frac{5}{2}\)\(\Leftrightarrow\frac{4m^2-2m-2}{m+1}=-\frac{5}{2}\Rightarrow8m^2-4m-4=-5m-5\left(m\ne-1\right)\)\(\Leftrightarrow8m^2+m+1=0\left(vn\right)\)không có giá trị nào của m thỏa mãn