K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2019

\(x^2-4x-m^2=0\) (1) 

\(a)\) Để pt (1) có hai nghiệm phân biệt \(x_1,x_2\) thì \(\Delta'=\left(-2\right)^2-\left(-m\right)^2=4+m^2>0\) ( luôn đúng ) 

Vậy pt (1) luôn có hai nghiệm phân biệt \(x_1,x_2\) với mọi m

\(b)\) Ta có : \(A=\left|x_1^2-x_2^2\right|=\left|\left(x_1+x_2\right)\left(x_1-x_2\right)\right|\)

\(\Leftrightarrow\)\(A^2=\left(x_1+x_2\right)^2\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2\left(x_1^2+x_2^2-2x_1x_2\right)=\left(x_1+x_2\right)^2\left[\left(x_1+x_2\right)^2-4x_1x_2\right]\) (*)

Theo định lý Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=4\\x_1x_2=-m^2\end{cases}}\)

(*) \(\Leftrightarrow\)\(A^2=4^2\left[4^2-4\left(-m^2\right)\right]=16\left(16+4m^2\right)=64m^2+256\ge256\)

\(\Leftrightarrow\)\(A\ge\sqrt{256}=16\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(64m^2=0\)\(\Leftrightarrow\)\(m=0\)

Vậy GTNN của \(A=16\) khi \(m=0\)

18 tháng 5 2019

a,\(x^2-4x-m^2=0\)(*)

\(\Delta=4^2-4\left(-m^2\right)=16+4m^2\ge16>0\)

Vậy pt luôn có 2 nghiệm phân biệt với mọi giá trị của m.

b,\(x_1=\frac{4-\sqrt{4m^2+16}}{2};x_2=\frac{4+\sqrt{4m^2+16}}{2}\)

\(\Rightarrow\left|x_1+x_2\right|=\left|\frac{4-\sqrt{4m^2+16}+4+\sqrt{4m^2+16}}{2}\right|=\left|\frac{8}{2}\right|=4\)

pt luôn = 4

18 tháng 5 2019

Sửa câu b

\(A=\left|x_1^2-x_2^2\right|=\left|\left(x_1-x_2\right)\left(x_1+x_2\right)\right|=\left|\left(\frac{4-\sqrt{4m^2+16}}{2}-\frac{4+\sqrt{4m^2+16}}{2}\right)\left(\frac{4-\sqrt{4m^2+16}}{2}+\frac{4+\sqrt{4m^2+16}}{2}\right)\right|\)\(\Leftrightarrow A=\left|-\left(\sqrt{4m^2+16}\right).4\right|\)

Vì \(4m^2+16>0\)

\(\Rightarrow A=\sqrt{4m^2+16}.4\ge\sqrt{16}.4=4^2=16\)

Vậy MinA = 16

20 tháng 5 2019

\(a)\) Để pt có hai nghiệm phân biệt \(x_1,x_2\) thì \(\Delta'=\left(1-m\right)^2-m^2+3m=1-2m+m^2-m^2+3m=m+1>0\)\(\Leftrightarrow\)\(m>-1\)

Vậy để pt có hai nghiệm phân biệt \(x_1,x_2\) thì \(m>-1\)

\(b)\) Ta có : \(T=x_1^2+x_2^2-\left(m-1\right)\left(x_1+x_2\right)+m^2-3m\)

\(T=\left(x_1+x_2\right)^2-2x_1x_2+\left(1-m\right)\left(x_1+x_2\right)+m^2-3m\)

Theo định lý Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=2\left(1-m\right)\\x_1x_2=m^2-3m\end{cases}}\)

\(\Rightarrow\)\(T=4\left(1-m\right)^2-2\left(m^2-3m\right)-2\left(1-m\right)\left(1-m\right)+m^2-3m\)

\(T=4m^2-8m+4-2m^2+6m-2m^2+4m-2+m^2-3m\)

\(T=m^2-m+2=\left(m^2-m+\frac{1}{4}\right)+\frac{7}{4}=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(m=\frac{1}{2}\) ( thoả mãn ) 

Vậy GTNN của \(T=\frac{7}{4}\) khi \(m=\frac{1}{2}\)

NV
18 tháng 5 2019

\(\Delta=16+4m^2>0\) \(\forall m\Rightarrow\) pt luôn có 2 nghiệm pb với mọi m

Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=-m^2\end{matrix}\right.\)

\(A=\left|\left(x_1-x_2\right)\left(x_1+x_2\right)\right|=\left|4\left(x_1-x_2\right)\right|\)

\(\Leftrightarrow A^2=16\left(x_1-x_2\right)^2\)

\(\Leftrightarrow\frac{A^2}{16}=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(\Leftrightarrow\frac{A^2}{16}=16+4m^2\ge16\)

\(\Rightarrow A^2\ge16^2\Rightarrow A\ge16\)

\(\Rightarrow A_{min}=16\) khi \(m=0\)

23 tháng 10 2019

a. + Với  m = − 1 2   phương trình (1) trở thành x 2 − 4 x = 0 ⇔ x = 0 x = 4 .

+ Vậy khi  m = − 1 2  phương trình có hai nghiệm x= 0 và x= 4.

b. + Phương trình có hai nghiệm dương phân biệt khi 

                            Δ = 2 m + 5 2 − 4 2 m + 1 > 0 x 1 + x 2 = 2 m + 5 > 0 x 1 . x 2 = 2 m + 1 > 0

+ Ta có  Δ = 2 m + 5 2 − 4 2 m + 1 = 4 m 2 + 12 m + 21 = 2 m + 3 2 + 12 > 0 , ∀ m ∈ R

+ Giải được điều kiện  m > − 1 2  (*).

+ Do P>0 nên P đạt nhỏ nhất khi P 2  nhỏ nhất.

+ Ta có P 2 = x 1 + x 2 − 2 x 1 x 2 = 2 m + 5 − 2 2 m + 1 = 2 m + 1 − 1 2 + 3 ≥ 3     ( ∀ m > − 1 2 ) ⇒ P ≥ 3    ( ∀ m > − 1 2 ) .

và P = 3  khi m= 0 (thoả mãn (*)).

+ Vậy giá trị nhỏ nhất  P = 3  khi m= 0.

3 tháng 5 2019

bạn làm theo hướng dẫn mình nèâCho phÆ°Æ¡ng trình: x^2 - 2mx + 2m - 2 = 0 (1) (m là tham sá»),Giải phÆ°Æ¡ng trình (1) khi m = 1.,Toán há»c Lá»p 9,bài tập Toán há»c Lá»p 9,giải bài tập Toán há»c Lá»p 9,Toán há»c,Lá»p 9

3 tháng 5 2019

\(a,\Delta=m^2-4m+4=\left(m-2\right)^2\ge0\forall m\)

Nên pt đã cho luôn có 2 nghiệm phân biệt với mọi m

b, Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)

Ta có \(B=\frac{2x_1x_2+3}{x_1^2+x_2^2+2\left(1+x_1x_2\right)}=1\)

\(\Leftrightarrow\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=1\)

\(\Leftrightarrow\frac{2\left(m-1\right)+3}{m^2+2}=1\)

\(\Leftrightarrow\frac{2m+1}{m^2+2}=1\)

\(\Leftrightarrow2m+1=m^2+2\)

\(\Leftrightarrow m^2-2m+1=0\)

\(\Leftrightarrow\left(m-1\right)^2=0\)

\(\Leftrightarrow m=1\)

NV
20 tháng 5 2019

a/ \(\Delta'=\left(m-1\right)^2-\left(m^2-3m\right)=m+1>0\Rightarrow m>-1\)

b/ Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2-3m\end{matrix}\right.\)

\(T=x_1^2+x_2^2+2x_1x_2-2x_1x_2-\left(m-1\right)\left(x_1+x_2\right)+m^2-3m\)

\(=\left(x_1+x_2\right)^2-2x_1x_2-\left(m-1\right)\left(x_1+x_2\right)+m^2-3m\)

\(=4\left(m-1\right)^2-2\left(m^2-3m\right)-2\left(m-1\right)\left(m-1\right)+m^2-3m\)

\(=m^2-m+2=m^2-m+\frac{1}{4}+\frac{7}{4}\)

\(=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)

\(\Rightarrow T_{min}=\frac{7}{4}\) khi \(m=\frac{1}{2}\)

20 tháng 5 2019

hihaKhiếp thật! Sao thầy giáo bạn lúc nào cx cho mấy câu hỏi oái oăm z? Ko, phải là khù khoằm ms đúng! Mình đây cực kỳ ngu toán đại, chỉ thích học hình thui!! Thông cảm!!

Xét phương trình : \(x^2-\left(2m+3\right)x+m=0\)

Ta có : \(\Delta=\left[-\left(2m+3\right)\right]^2-4.1.m\)

\(=4m^2+12m+9-4m=4m^2+8m+9\)

\(=\left(2m+2\right)^2+5\)

Có : \(\left(2m+2\right)\ge0\forall m\Rightarrow\left(2m+2\right)^2+5>0\)

\(\Rightarrow\)phương trình luôn có hai nghiệm phân biệt \(x_1\)\(x_2\)

Theo hệ thức VI-ÉT ta có :

\(\hept{\begin{cases}x_1+x_2=2m+3\\x_1.x_2=m\end{cases}\left(^∗\right)}\)

Có : \(K=x^2_1+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2\)

Thay \(\left(^∗\right)\)vào K ta được :

\(K=\left(2m+3\right)^2-2m\)

\(\Leftrightarrow K=4m^2+12m+9-2m\)

\(\Leftrightarrow K=4m^2+10m+9\)

\(\Leftrightarrow K=\left(2m+\frac{5}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)

Vậy \(K_{min}=\frac{11}{4}\) đạt đc khi \(2m+\frac{5}{2}=0\Leftrightarrow m=-\frac{5}{4}\)

23 tháng 4 2021

dcmm shut up

23 tháng 4 2021

có làm ms có ăn ,ko làm mà đòi có ăn thì ăn đb ân c