Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\Delta'=1-m>0\Rightarrow m< 1\)
Để pt có 2 nghiệm t/m đề bài
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)>0\\\frac{x_1+x_2}{2}< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\2< 4\end{matrix}\right.\) \(\Rightarrow0< m< 1\)
2. Để pt có 2 nghiệm pb
\(\left\{{}\begin{matrix}m\ne2\\\Delta'=m^2-\left(m-2\right)\left(m+3\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m< 6\end{matrix}\right.\)
Để 2 nghiệm đều dương: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2m}{m-2}>0\\x_1x_2=\frac{m+3}{m-2}>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>2\\m< -3\end{matrix}\right.\)
Kết hợp lại: \(\left[{}\begin{matrix}2< m< 6\\m< -3\end{matrix}\right.\)
3. Đặt \(f\left(x\right)=\left(m-3\right)x^2+\left(m-1\right)x+m\)
Để pt có 2 nghiệm thỏa mãn đề bài
\(\Leftrightarrow\left(m-3\right).f\left(2\right)< 0\)
\(\Leftrightarrow\left(m-3\right)\left(7m-14\right)< 0\Rightarrow2< m< 3\)
a) Ta có: \(\Delta\) = (-2m)2 - 4.1.(m-2) = 4m2 - 4m + 8 = (4m2 - 4m + 1) + 7 = (2m-1)2 + 7 \(\ge\) 7 > 0 x do đo (1) luôn có 2 nghiệm với mọi m.
\(m\ne5\)
\(\Delta'=\left(m-1\right)^2-m\left(m-5\right)=3m+1>0\Rightarrow m>-\frac{1}{3}\)
Đặt \(f\left(x\right)=\left(m-5\right)x^2+2\left(m-1\right)x+m\)
Để \(x_1< 1< x_2\Leftrightarrow\left(m-5\right).f\left(1\right)< 0\)
\(\Leftrightarrow\left(m-5\right)\left(m-5+2m-2+m\right)< 0\)
\(\Leftrightarrow\left(m-5\right)\left(4m-7\right)< 0\)
\(\Rightarrow\frac{7}{4}< m< 5\)
f(x)=ax^2+bx+c (1)
đề Khó hiểu: a.f(x)=a^2x^2+abx+ac<0 (2) phải cho x khoảng nào hay là đúng với mọi x: đúng với mọi x không phải rồi vì khi x lớn (2) lớn=> không thể <0 được
Với giá trị nào của m thì phương trình (m-1)x2-2(m-2)x+m-3=0 có 2 nghiệm x1,x2 thỏa mãn x1+x2+x1x2<1
m=1 loại
m khác 1:
\(\Delta'=\left(m-2\right)^2-\left(m-1\right)\left(m-3\right)=1>0\)
Theo hệ thức viét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\frac{2\left(m-2\right)}{m-1}\\x_1.x_2=\frac{m-3}{m-1}\end{matrix}\right.\)
x1+x2+x1.x2-1=\(\frac{2m-6}{m-1}< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>3\\m< 1\end{matrix}\right.\)
Vậy m>3 hoặc m<1 thỏa mãn
Từ pt trên suy ra \(y=x+1\) thay xuông dưới:
\(\left(m-1\right)x^2+\left(x+1\right)^2+x-2\left(x+1\right)+2m-3=0\)
\(\Leftrightarrow mx^2+x+2m-4=0\)
Đặt \(f\left(x\right)=mx^2+x+2m-4=0\)
Để phương trình có 2 nghiệm thỏa mãn \(x_1< x_2< 2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1-4m\left(2m-4\right)>0\\a.f\left(2\right)=m\left(4m+2+2m-4\right)>0\\\frac{x_1+x_2}{2}=\frac{-1}{2m}< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-8m^2+16m+1>0\\m\left(6m-2\right)>0\\\frac{4m+1}{2m}>0\end{matrix}\right.\) \(\Leftrightarrow\frac{1}{3}< m< \frac{4+3\sqrt{2}}{4}\)