\(x^2-2\left(m+1\right)x+m-4=0\) (1)

- Gọi x1,x

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2017

\(\Delta=\)(m+1)\(^2\)- 1.(m-4) =\(m^2+2m+1\)\(-m+4\)=m\(^2\)+m+5>0 với mọi m

Gọi \(x_1,x_2\)là nghiệm của phương trình (1)

theo hệ thức Vi-ét ta có \(x_1+x_2=2\left(m+1\right)\);\(x_1.x_2=\)m-4

B=\(x_1\left(1-x_2\right)+x_2\left(1-x_1\right)=x_1-x_1x_2+x_2-x_1x_2=2\left(m+1\right)-2.\left(m-4\right)=2m-2m+2+8=10\)

=> B không phụ thuộc vào m

4 tháng 5 2017

không có gì

11 tháng 6 2020

dcv_new 

dcv - new

Thay m = - 1 vào thì ta có: \(x^2-x-6=0\)

<=> x = 3 hoặc x = -2 

Vậy m = -1 và x2 = - 2

11 tháng 6 2020

a, Thay \(x_1=3\)vào phương trình , khi đó :

\(pt< =>\)\(3^2+3m+2m-4=0\)

\(< =>5m+5=0\)

\(< =>m=-\frac{5}{5}=-1\)

Thay \(m=-1\)vào phương trình , khi đó :

\(pt< =>x^2-x+2=0\)

\(< =>x=\varnothing\left(vo-nghiem\right)\)(giải delta)

Vậy phương trình chỉ có nghiệm kép khi \(m=-1\)

b, Theo hệ thức vi ét ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m\\x_1x_2=\frac{c}{a}=2m-4\end{cases}}\)

Khi đó \(A=\frac{2m-4+3}{-m}=\frac{2m-1}{-m}\)

Bạn thiếu đề rồi thì phải !

AH
Akai Haruma
Giáo viên
13 tháng 5 2019

Lời giải:

1.

Để pt có 2 nghiệm phân biệt thì:

\(\Delta=(2m-1)^2-4(m^2-1)=5-4m>0\)

\(\Leftrightarrow m< \frac{5}{4}\)

2.

Với \(m< \frac{5}{4}\), áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=2m-1\\ x_1x_2=m^2-1\end{matrix}\right.\)

Khi đó:

\((x_1-x_2)^2=x_1-3x_2\)

\(\Leftrightarrow (x_1+x_2)^2-4x_1x_2=(x_1+x_2)-4x_2\)

\(\Leftrightarrow (2m-1)^2-4(m^2-1)=2m-1-4x_2\)

\(\Leftrightarrow 5-4m=2m-1-4x_2\)

\(\Leftrightarrow x_2=\frac{3-3m}{2}\)

\(\Rightarrow x_1=2m-1-x_2=\frac{7m-5}{2}\)

\(\Rightarrow x_1x_2=\frac{(3-3m)(7m-5)}{4}=m^2-1\)

\(\Rightarrow \left[\begin{matrix} m=\frac{11}{25}\\ m=1\end{matrix}\right.\) (giải pt bậc 2 đơn giản)

Thử lại thấy thỏa mãn. Vậy..........

\(\Rightarrow \)

26 tháng 1 2019

a. Có : \(\Delta=\left(-2m\right)^2-4\left(m-2\right)\)

=\(4m^2-4m+8\)

=​\(4\left(m-1\right)^2+4>0\forall m\in R\)

Vậy pt luôn có 2 nghiệm phân biệt với mọi m.

Thầy ơi, tại sao em không dùng được hộp gõ công thức trực quan vậy thầy, nó cứ nhảy xuống không?

26 tháng 1 2019

:'v Câu b mới căng não cậu ạ

26 tháng 4 2019

\(\Delta'=\left(-m\right)^2-2m^2+1\)

=\(m^2-2m^2+1\)

=\(-m^2+1\) \(\Rightarrow-m^2+1>0\Leftrightarrow m< 1\)

theo vi-et ta có \(x_1+x_2=-2m\)

\(x_1.x_2=2m^2-1\)

theo đề bài ta có \(\left(x_1\right)^3+\left(x_2\right)^3-\left(x_1\right)^2-\left(x_2\right)^2=-2\)

\(\Leftrightarrow\)\(\left(x_1+x_2\right).\left(x_1^2-x_1.x_2+x_2^2\right)\) = 4

\(\Leftrightarrow\left(x_1+x_2\right).[\left(x_1+x_2\right)^2-3x_1.x_2]\) =4

\(\Leftrightarrow-2m.[\left(-2m\right)^2-3.\left(2m^2-1\right)]\)=4

\(\Leftrightarrow-2m.\left(4m^2-6m^2+3\right)\)=4

\(\Leftrightarrow-2m.\left(-2m^2-3\right)\) =4

\(\Leftrightarrow4m^2+6m\) =4

\(\Leftrightarrow4m^2+6m-4=0\)

\(\Delta=6^2-4.4.\left(-4\right)=36+64=100>0\) =>\(\sqrt{\Delta}=\sqrt{100}=50\)

phương trình có 2 ngiệm \(x_1=\frac{11}{2}\),\(x_2=-7\)

với \(x_2=-7\) thỏa mãn đk

26 tháng 4 2019

bài này thì mk ko chắc đúng ko từ \(-2m.\left(-2m^2-3\right)\) trở lên là đúng

NV
27 tháng 4 2019

Gọi \(a=x_1\)\(b=x_2\) gõ cho lẹ

\(\Delta'=m^2-2m^2+1=1-m^2\ge0\Rightarrow-1\le m\le1\)

Theo Viet ta có: \(\left\{{}\begin{matrix}a+b=2m\\ab=2m^2-1\end{matrix}\right.\)

\(A=a^3+b^3-\left(a^2+b^2\right)=\left(a+b\right)^3-3ab\left(a+b\right)-\left(a+b\right)^2+2ab\)

\(A=8m^3-6m\left(2m^2-1\right)-4m^2+2\left(2m^2-1\right)\)

\(A=-4m^3+6m-2=-2\)

\(\Leftrightarrow4m^3-6m=0\)

\(\Leftrightarrow2m\left(2m^2-3\right)=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-\frac{\sqrt{6}}{2}< -1\left(l\right)\\m=\frac{\sqrt{6}}{2}>1\left(l\right)\end{matrix}\right.\)

NV
13 tháng 4 2020

\(\Delta'=\left(m+1\right)^2-\left(4m^2-2m+3\right)=-2m^2+4m-2\)

\(=-2\left(m-1\right)^2\le0\) \(\forall m\)

\(\Rightarrow\) Không tồn tại m để pt có 2 nghiệm phân biệt

Đề bài có vấn đề