Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=\left(m-1\right)^2-m^2+m-1=m^2-2m+1-m^2+m-1=-m.\)
Để phương trình có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow-m\ge0\Leftrightarrow m\le0\)
Theo vi ét:
\(\hept{\begin{cases}x_1+x_2=-2\left(m-1\right)\\x_1.x_2=m^2-m+1=\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\)
\(\left|x_1\right|+\left|x_2\right|=4\Leftrightarrow x_1+x_2+2\left|x_1.x_2\right|=16\)
\(\Leftrightarrow1-2m+2\left|m^2-m+1\right|=16\)
\(\Leftrightarrow1-2m+2m^2-2m+2=16\)(Vì \(m^2-m+1>0\Rightarrow\left|m^2-m+1\right|=m^2-m+1\))
\(\Leftrightarrow2m^2-4m-13=0\)
Đến đây bạn tự giải \(\Delta\)tìm m đối chiếu điều kiện là ok.
Để phương trình có hai nghiệm thì \(\Delta'>0\).
\(\Delta'=\left(m-2\right)^2+\left(m-1\right)=m^2-3m+3=\left(m-\frac{3}{2}\right)^2+\frac{3}{4}>0\)
Do đó phương trình luôn có hai nghiệm phân biệt \(x_1,x_2\).
Theo Viet:
\(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1x_2=-m+1\end{cases}}\)
\(x_1^2-2x_1x_2+x_2^2+4x_1^2x_2^2=\left(x_1+x_2\right)^2-4x_1x_2+4x_1^2x_2^2\)
\(=4\left(m-2\right)^2+4\left(m-1\right)+4\left(m-1\right)^2=4\left(2m^2-5m+4\right)=4\)
\(\Leftrightarrow2m^2-5m+4=1\)
\(\Leftrightarrow\orbr{\begin{cases}m=\frac{3}{2}\\m=1\end{cases}}\)
Xét \(\Delta'=m^2-4=\left(m-2\right)\left(m+2\right)\)
Để phương trình có 2 nghiệm x1; x2 điều kiện là:
\(\Delta'=m^2-4=\left(m-2\right)\left(m+2\right)\ge0\Leftrightarrow\orbr{\begin{cases}m\ge2\\m\le-2\end{cases}}\)( ***)
Áp dụng định lí viet ta có: \(\hept{\begin{cases}x_1.x_2=4\\x_1+x_2=2m\end{cases}}\)
Theo bài ra ta có: \(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)
<=> \(x_1^2+2x_1+1+x_2^2+2x_2+1=2\)
<=> \(\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\)
<=> \(\left(2m\right)^2-2.4+2.\left(2m\right)=0\)
<=> \(m^2+m-2=0\)
<=> m = - 2 ( thỏa mãn (***) ) hoặc m = 1 ( không thỏa mãn ***)
Vậy m = - 2.
giải theo công thức là ra