Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để phương trình có 2 nghiệm phân biệt thì \(\Delta=\left(3m+2\right)^2-4m^2>0< =>5m^2+12m+4>0\)(1)
x1+x2 = 4x2 = \(\frac{-b}{a}=3m+2\)<=> x2 = \(\frac{3m+2}{4}\)
x1x2= 4x22 = \(\frac{c}{a}=m^2\)<=> 4.\(\left(\frac{3m+2}{4}\right)^2=m^2< =>9m^2+12m+4=4m^2\)<=> \(5m^2+12m+4=0\) so sánh với điều kiện (1) thì không có m thỏa mãn
Vậy k tồn tại m thỏa mãn đề bài
a, Với m=2
\(Pt\Leftrightarrow x^2-8x+9=0\Leftrightarrow\left(x-4\right)^2=7\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=\sqrt{7}\\x-4=-\sqrt{7}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{7}+4\\x=-\sqrt{7}+4\end{cases}}\)
Vậy pt có 2 nghiệm phân biệt \(\orbr{\begin{cases}x=\sqrt{7}+4\\x=-\sqrt{7}+4\end{cases}}\)
Theo hệ thức vi ét thì : \(x_1.x_2=m+8\)
\(< =>\hept{\begin{cases}x_1=\frac{m+8}{x_2}\\x_2=\frac{m+8}{x_1}\end{cases}}\)
Khi đó : \(\left(\frac{m+8}{x_2}\right)^3-\frac{m+8}{x_1}=0\)
\(< =>\frac{\left(m+8\right)^3}{x_2^3}-\frac{m+8}{x_1}=0\)
\(< =>\left(m+8\right)\left(\frac{\left(m+8\right)^2}{x_2^3}-\frac{1}{x_1}\right)=0\)
\(< =>\orbr{\begin{cases}m=-8\\\frac{m^2+16m+64}{x_2^3}=\frac{1}{x_1}\left(+\right)\end{cases}}\)
\(\left(+\right)< =>m^2.x_1+16m.x_1+64x_1=x_2^3\)
Tự giải tiếp :D
Lời giải:
Xin chỉnh sửa lại chút, tìm $k$, chứ không phải tìm $m$.
PT $\Leftrightarrow x^2-(6k-2)=0\Leftrightarrow x^2=6k-2$
Để pt có 2 nghiệm phân biệt thì $6k-2>0\Leftrightarrow k>\frac{1}{3}$
Khi đó:
$x_1=\sqrt{6k-2}$ và $x_2=-\sqrt{6k-2}$
Để $3x_1-x_2=2$
$\Leftrightarrow 3\sqrt{6k-2}+\sqrt{6k-2}=2$
$\Leftrightarrow \sqrt{6k-2}=\frac{1}{2}\Rightarrow k=\frac{3}{8}$
Câu này có cần tính viets ko ạ