K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
DD
Đoàn Đức Hà
Giáo viên
14 tháng 5 2021
\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)
nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\).
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)
\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)
\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)
Dấu \(=\)xảy ra khi \(m=-1\).
Để pt có ng0 thì: \(\Delta'=\left(2m+5\right)^2-2m-1>0\)
\(\Leftrightarrow4m^2+2m+24>0\left(LĐ\right)\)
Theo Viet:\(x_1+x_2=4m+10;x_1x_2=2m+1\)
\(A^2=\left|x_1\right|+\left|x_2\right|-2\sqrt{x_1x_2}\)
\(A^2=\left|x_1\right|+\left|x_2\right|-2\sqrt{2m+1}\)
\(A^2=\sqrt{\left(x_1+x_2\right)^2}-2\sqrt{2m+1}\)
\(A^2=\sqrt{\left(4m+10\right)^2}-2\sqrt{2m+1}\)
Đến đây thì dễ rồi.
\(\left|\sqrt{x_1}\right|-\left|\sqrt{x_2}\right|\) ?