Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lớp 7 sao lại để ở đây:
f(x0)=!1-3x0!
f(-x0)=!1+3x0!
f(x0)=f(-x0)=> !1-3x0!=!1+3x0! (1) khó viết cho x0=a đi
\(a< -\frac{1}{3}\Leftrightarrow1-3a=-1-3a\) => vô nghiệm a
\(-\frac{1}{3}\le a\le\frac{1}{3}\Rightarrow1-3a=1+3a\Rightarrow a=0\)
\(a\ge\frac{1}{3}\Rightarrow3a-1=1+3a\\ \)=> vô nghiêmh
Kết luận: \(x_0=0\)
Bài 1:
Khai bút đầu năm lấy may :''>
Đặt $x^2+ax+1=t$ thì ta có hệ \(\left\{\begin{matrix} x^2+ax+(1-t)=0(1)\\ t^2+at+1=0(2)\end{matrix}\right.\)
Trước tiên, pt $(2)$ cần có nghiệm.
Điều này xảy ra khi $\Delta_{(2)}=a^2-4\geq 0\Leftrightarrow a\geq 2$ hoặc $a\leq -2$
Để PT ban đầu có nghiệm duy nhất thì PT $(1)$ phải có nghiệm duy nhất. Điều này xảy ra khi $\Delta_{(1)}=a^2-4(1-t)=0$
$\Leftrightarrow 4(1-t)=a^2$. Mà $a^2\geq 4$ nên $1-t\geq 1\Rightarrow t\leq 0$
------------------
Giờ ta xét:
Nếu $a\leq -2$. Kết hợp với $t\leq 0\Rightarrow at\geq -2t$
$\Rightarrow 0=t^2+at+2\geq t^2-2t+1\Leftrightarrow 0\geq (t-1)^2$.
$\Rightarrow t-1=0\Rightarrow t=1$ (vô lý vì $t\leq 0$)
Do đó $a\geq 2$
Tuy nhiên thay $a=2$ vào hệ ta thấy không thỏa mãn. Do đó $a>2$ (đpcm)
Bài 2:
Nếu $a=0\Rightarrow 2b+5c=0\Rightarow c=\frac{-2}{5}b$
PT trở thành: $bx+c=0$
$\Leftrightarrow bx-\frac{2}{5}b=0$ có nghiệm duy nhất $x=\frac{2}{5}$ nếu $b\neq 0$ hoặc vô số nghiệm nếu $b=0$
Tức là với $a=0$ pt luôn có nghiệm.
Nếu $a\neq 0$. PT đã cho là pt bậc hai ẩn $x$
Xét $\Delta=b^2-4ac=b^2-4(-2b-5c)c=b^2+8bc+20c^2=(b+4c)^2+4c^2\geq 0$ với mọi $b,c$ nên PT đã cho luôn có nghiệm.
Vậy........
Với \(m\ne-1\)
\(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-1\right)\left(m+5\right)>0\)
\(\Leftrightarrow\left(m-1\right)\left(m-1-m^2-6m-5\right)>0\)
\(\Leftrightarrow\left(m-1\right)\left(m^2+5m+6\right)< 0\Rightarrow\left[{}\begin{matrix}m< -3\\-2< m< 1\end{matrix}\right.\)
Đặt \(f\left(x\right)=\left(m+1\right)x^2-2\left(m-1\right)x+m^2+4m-5\)
Để pt có 2 nghiệm thỏa mãn \(x_2>x_1>2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x_1+x_2}{2}-2>0\\a.f\left(2\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{m-1}{m+1}-2>0\\\left(m+1\right)\left[4\left(m+1\right)-4\left(m-1\right)+m^2+4m-5\right]>0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{-m-3}{m+1}>0\\\left(m+1\right)\left(m^2+4m+3\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3< m< -1\\\left\{{}\begin{matrix}m>-3\\m\ne-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow-3< m< -1\)
Kết hợp điều kiện delta \(\Rightarrow-2< m< -1\)
\(\left(a^2+b^2+c^2+1\right)x=ab+bc+ca\)
\(\Leftrightarrow x=\dfrac{ab+bc+ca}{a^2+b^2+c^2+1}\)
Ta có:
\(x^2-1=\dfrac{\left(ab+bc+ca\right)^2}{\left(a^2+b^2+c^2+1\right)^2}-1=\dfrac{\left(ab+bc+ca-a^2-b^2-c^2-1\right)\left(ab+bc+ca+a^2+b^2+c^2+1\right)}{\left(a^2+b^2+c^2+1\right)^2}\)
\(=\dfrac{\left[-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2-2\right]\left[\left(a+b+c\right)^2+a^2+b^2+c^2+2\right]}{4\left(a^2+b^2+c^2+1\right)^2}< 0\)
\(\Rightarrow x^2-1< 0\Rightarrow\left|x\right|< 1\)