Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(\Delta=9-8=1>0\)
Nên pt luôn có 2 nghiệm
Theo hệ thức Vi-ét có
\(\hept{\begin{cases}x_1+x_2=3\\x_1x_2=2\end{cases}}\)
*Lập pt bậc 2 ẩn y
Có \(S_y=y_1+y_2=x_1+\frac{1}{x_2}+x_2+\frac{1}{x_1}\)
\(=\left(x_1+x_2\right)+\frac{x_1+x_2}{x_1x_2}\)
\(=3+\frac{3}{2}\)
\(=\frac{9}{2}\)
\(P_y=y_1.y_2=\left(x_1+\frac{1}{x_2}\right)\left(x_2+\frac{1}{x_1}\right)\)
\(=x_1x_2+1+1+\frac{1}{x_1x_2}\)
\(=2+2+\frac{1}{2}\)
\(=\frac{9}{2}\)
Vậy pt cần lập có dạng \(y^2-Sy+P=0\)
\(\Leftrightarrow y^2-\frac{9}{2}+\frac{9}{2}=0\)
\(\Leftrightarrow2y^2-9y+9=0\)
Lời giải:
Áp dụng định lý Vi-et cho 2 nghiệm $x_1,x_2$ của pt $3x^2+5x-6=0$ ta có:
\(\left\{\begin{matrix} x_1+x_2=\frac{-5}{3}\\ x_1x_2=-2\end{matrix}\right.\)
Khi đó:
\(\left\{\begin{matrix} y_1+y_2=x_1+\frac{1}{x_2}+x_2+\frac{1}{x_1}=(x_1+x_2)+\frac{x_1+x_2}{x_1x_2}=\frac{-5}{3}+\frac{-5}{3.(-2)}=\frac{-5}{6}\\ y_1y_2=x_1x_2+1+1+\frac{1}{x_1x_2}=-2+2+\frac{1}{-2}=\frac{-1}{2}\end{matrix}\right.\)
Áp dụng định lý Vi-et đảo, $y_1,y_2$ là nghiệm của pt:
$y^2+\frac{5}{6}y-\frac{1}{2}=0$
$\Leftrightarrow 6y^2+5y-3=0$ (đây là pt cần tìm)
(a=2, b=-m, c=m-2)
=>\(b^2-4ac=m^2-4\cdot2\cdot\left(m-2\right)=m^2-8m+16=\left(m-4\right)^2>=0\)
=> pt có luôn có ngiệm với mọi m
ta có phương trình x^2 +3x +m =0
nên để pt có 2 nghiệm phân biệt thì 9 - 4m > 0 hay m <9/4
theo Viét nếu x1 và x2 là 2 nghiệm của pt thì
x1 +x2 =-3 (1)và
x1*x2=m => 2x1*x2 =2m (2)
=> x1^2 +x2^2 +2m = (x1 +x2 )^2 (từ (1) và (2) )( cái hằng đẳng thức chắc bạn phải biết r đúng ko )
mà x1 +x2 =-3 ,,,x1^2 +x2^2 = 31 nên ta có
31 +2m =9
m = -11
áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1x_2=-2\\x_1+x_2=-\dfrac{5}{3}\end{matrix}\right.\)
\(\Rightarrow y_1=x_1+\dfrac{1}{x_2}=\dfrac{x_1x_2+1}{x_2}=\dfrac{-1}{x_2}\)
\(y_2=x_2+\dfrac{1}{x_1}=\dfrac{x_1x_2+1}{x_1}=\dfrac{-1}{x_1}\)
\(\Rightarrow y_1y_2=\dfrac{-1}{x_1}.\dfrac{-1}{x_2}=\dfrac{1}{x_1x_2}=\dfrac{-1}{2}\)
\(y_1+y_2=\dfrac{-1}{x_1}-\dfrac{1}{x_2}=\dfrac{-x_2-x_1}{x_1x_2}=\dfrac{-\left(x_1+x_2\right)}{x_1x_2}=-\dfrac{5}{6}\)
áp dụng hệ thức vi ét đảo ta có : \(y_1;y_2\) là nghiệm của phương trình :
\(X^2+\dfrac{5}{6}X-\dfrac{1}{2}=0\Leftrightarrow6X^2+5X-3=0\)