K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2018

áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1x_2=-2\\x_1+x_2=-\dfrac{5}{3}\end{matrix}\right.\)

\(\Rightarrow y_1=x_1+\dfrac{1}{x_2}=\dfrac{x_1x_2+1}{x_2}=\dfrac{-1}{x_2}\)

\(y_2=x_2+\dfrac{1}{x_1}=\dfrac{x_1x_2+1}{x_1}=\dfrac{-1}{x_1}\)

\(\Rightarrow y_1y_2=\dfrac{-1}{x_1}.\dfrac{-1}{x_2}=\dfrac{1}{x_1x_2}=\dfrac{-1}{2}\)

\(y_1+y_2=\dfrac{-1}{x_1}-\dfrac{1}{x_2}=\dfrac{-x_2-x_1}{x_1x_2}=\dfrac{-\left(x_1+x_2\right)}{x_1x_2}=-\dfrac{5}{6}\)

áp dụng hệ thức vi ét đảo ta có : \(y_1;y_2\) là nghiệm của phương trình :

\(X^2+\dfrac{5}{6}X-\dfrac{1}{2}=0\Leftrightarrow6X^2+5X-3=0\)

20 tháng 1 2019

Có \(\Delta=9-8=1>0\)

Nên pt luôn có 2 nghiệm

Theo hệ thức Vi-ét có

\(\hept{\begin{cases}x_1+x_2=3\\x_1x_2=2\end{cases}}\)

*Lập pt bậc 2 ẩn y

Có \(S_y=y_1+y_2=x_1+\frac{1}{x_2}+x_2+\frac{1}{x_1}\)

                            \(=\left(x_1+x_2\right)+\frac{x_1+x_2}{x_1x_2}\)

                             \(=3+\frac{3}{2}\)

                             \(=\frac{9}{2}\)

  \(P_y=y_1.y_2=\left(x_1+\frac{1}{x_2}\right)\left(x_2+\frac{1}{x_1}\right)\)

                    \(=x_1x_2+1+1+\frac{1}{x_1x_2}\)

                    \(=2+2+\frac{1}{2}\)

                    \(=\frac{9}{2}\)

Vậy pt cần lập có dạng \(y^2-Sy+P=0\)

                            \(\Leftrightarrow y^2-\frac{9}{2}+\frac{9}{2}=0\)

                           \(\Leftrightarrow2y^2-9y+9=0\)

AH
Akai Haruma
Giáo viên
4 tháng 4 2020

Lời giải:

Áp dụng định lý Vi-et cho 2 nghiệm $x_1,x_2$ của pt $3x^2+5x-6=0$ ta có:

\(\left\{\begin{matrix} x_1+x_2=\frac{-5}{3}\\ x_1x_2=-2\end{matrix}\right.\)

Khi đó:

\(\left\{\begin{matrix} y_1+y_2=x_1+\frac{1}{x_2}+x_2+\frac{1}{x_1}=(x_1+x_2)+\frac{x_1+x_2}{x_1x_2}=\frac{-5}{3}+\frac{-5}{3.(-2)}=\frac{-5}{6}\\ y_1y_2=x_1x_2+1+1+\frac{1}{x_1x_2}=-2+2+\frac{1}{-2}=\frac{-1}{2}\end{matrix}\right.\)

Áp dụng định lý Vi-et đảo, $y_1,y_2$ là nghiệm của pt:

$y^2+\frac{5}{6}y-\frac{1}{2}=0$

$\Leftrightarrow 6y^2+5y-3=0$ (đây là pt cần tìm)

13 tháng 4 2016

(a=2, b=-m, c=m-2)

=>\(b^2-4ac=m^2-4\cdot2\cdot\left(m-2\right)=m^2-8m+16=\left(m-4\right)^2>=0\)

=> pt có luôn có ngiệm với mọi m

31 tháng 12 2017

ta có phương trình x^2 +3x +m =0 

nên để pt có 2 nghiệm phân biệt thì 9 - 4m > 0 hay m <9/4

theo Viét  nếu x1 và x2 là 2 nghiệm của pt thì 

x1 +x2 =-3 (1)và

x1*x2=m  => 2x1*x2 =2m (2)

=> x1^2 +x2^2 +2m = (x1 +x2 )^2 (từ (1) và (2) )( cái hằng đẳng thức chắc bạn phải biết r đúng ko )

mà x1 +x2 =-3 ,,,x1^2 +x2^2 = 31 nên ta có

31 +2m =9 

m = -11

31 tháng 12 2017

vưa nãy mình -   nhầm 31 + 2m =9  thì m= -12 mới phải (hi  hi )