Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình đã cho có nghiệm khi:
\(\Delta'=\left(m+1\right)^2-2\left(m^2+4m+3\right)=-m^2-6m-5\ge0\)
\(\Leftrightarrow-5\le m\le-1\)
Khi đó \(\left\{{}\begin{matrix}x_1+x_2=-m-1\\x_1.x_2=\frac{m^2+4m+3}{2}\end{matrix}\right.\)
\(A=|\frac{m^2+4m+3}{2}+2\left(m+1\right)|=\frac{1}{2}.|m^2+8m+7|\le\frac{1}{2}.|0|=0\)
\(\Rightarrow MaxA=0\Leftrightarrow m=-1\)
Lời giải:
Để PT có 2 nghiệm thì $\Delta'=(m+1)^2-2(m^2+4m+3)=-(m+1)(m+5)\geq 0$
$\Leftrightarrow -5\leq m\leq -1$
Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=-(m+1)\\ x_1x_2=\frac{m^2+4m+3}{2}\end{matrix}\right.\)
Khi đó:
\(A=|\frac{m^2+4m+3}{2}+2(m+1)|=\frac{|(m+1)(m+7)|}{4}=\frac{-(m+1)(m+7)}{4}\) do $m\in [-5;-1]$
Mà:
$-(m+1)(m+7)=-(m^2+8m+7)=9-(m^2+8m+16)=9-(m+4)^2\leq 9$ với mọi $m\in [-5;-1]$
$\Rightarrow A\leq \frac{9}{4}$
Vậy $A_{\max}=\frac{9}{4}$ khi $m=-4$
Lời giải:
Để PT có 2 nghiệm thì $\Delta'=(m+1)^2-2(m^2+4m+3)=-(m+1)(m+5)\geq 0$
$\Leftrightarrow -5\leq m\leq -1$
Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=-(m+1)\\ x_1x_2=\frac{m^2+4m+3}{2}\end{matrix}\right.\)
Khi đó:
\(A=|\frac{m^2+4m+3}{2}+2(m+1)|=\frac{|(m+1)(m+7)|}{4}=\frac{-(m+1)(m+7)}{4}\) do $m\in [-5;-1]$
Mà:
$-(m+1)(m+7)=-(m^2+8m+7)=9-(m^2+8m+16)=9-(m+4)^2\leq 9$ với mọi $m\in [-5;-1]$
$\Rightarrow A\leq \frac{9}{4}$
Vậy $A_{\max}=\frac{9}{4}$ khi $m=-4$
\(\Delta=\left(2m-2\right)^2-4\cdot2\cdot\left(m^2-1\right)\)
\(=4m^2-8m+4-8m^2+8\)
\(=-4m^2-8m+12\)
Để phương trình có hai nghiệm phân biệt thì -4m^2-8m+12>0
=>4m^2+8m-12<0
=>m^2+2m-3<0
=>(m+3)(m-1)<0
=>-3<m<1
\(A=\left(x_1+x_2\right)^2-4x_1x_2\)
\(=\left(\dfrac{2m-2}{2}\right)^2-4\cdot\dfrac{m^2-1}{2}\)
\(=\left(m-1\right)^2-2\left(m^2-1\right)\)
\(=m^2-2m+1-2m^2+2=-m^2-2m+3\)
\(=-\left(m^2+2m-3\right)\)
\(=-\left(m^2+2m+1-4\right)\)
\(=-\left(m+1\right)^2+4< =4\)
Dấu = xảy ra khi m=-1
để pt có 2 nghiệm phân biệt thì: đenta > 0
mà ddeenta = m2 - 6m - 7 > 0
giải ra ta đc: m<-1 hay m>7 (1)
áp dụng hệ thức vi-et đc x1 + x2 = m-1 và x1.x2= m+2
kết 2 biểu thức trên dễ dàng làm đc x12 + x22 = m2-4m-3
bđt trên (=) (x12+x22)/x12.x22 - 1 > 0
thay vào đc (-16m -7)/(m2+4m+4) > 0 =) m khác -2 và m<-7/16
kết hợp vs (1) =) m<-1 và m khác -2