Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra , ta có :
2(x2 + m + 1) = (1+m) (1-m)
(=) 2(x2 + m + 1) = 1 - m2
(=) x2 + m +1 - \(\frac{1+m^2}{2}\)
Vậy để phương trình có nghiệm thì m \(\ge\)0
Chúc bạn học tốt =))
1) Phương trình ban đầu tương đương :
\(\left(2021x-2020\right)^3=\left(2x-2\right)^3+\left(2019x-2018\right)^3\)
Đặt \(a=2x-2,b=2019x-2018\)
\(\Rightarrow a+b=2021x-2020\)
Khi đó phương trình có dạng :
\(\left(a+b\right)^3=a^3+b^3\)
\(\Leftrightarrow3ab\left(a+b\right)=0\)
\(\Leftrightarrow3\cdot\left(2x-2\right)\cdot\left(2019x-2018\right)\cdot\left(2021x-2002\right)=0\)
\(\Leftrightarrow\)Hoặc \(2x-2=0\)
Hoặc \(2019x-2018=0\)
Hoặc \(2021x-2020=0\)
\(\Rightarrow x\in\left\{1,\frac{2018}{2019},\frac{2020}{2021}\right\}\) (thỏa mãn)
Vậy : phương trình đã cho có tập nghiệm \(S=\left\{1,\frac{2018}{2019},\frac{2020}{2021}\right\}\)
\(x\left(2x-3\right)+x\left(x-m\right)=3x^2+x-m\)
\(\Leftrightarrow2x^2-3x+x^2-xm=3x^2+x-m\)
\(\Leftrightarrow-3x-xm=x-m\)
\(\Leftrightarrow4x+xm=m\Leftrightarrow x\left(4+m\right)=m\)
\(\Leftrightarrow x=\frac{m}{m+4}\)
Phương trình có nghiệm không âm \(\Leftrightarrow x\ge0\)
\(\Rightarrow\frac{m}{m+4}\ge0\)
Mà \(m+4>m\)nên \(\orbr{\begin{cases}m\ge0\\m+4\le0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m\ge0\\m\le-4\end{cases}}\)
+ với x =1
=> PT => \(m^2-m+7+3m^2-3m-6-1=0.\)
\(\Leftrightarrow4m^2-4m=0\Leftrightarrow4m\left(m-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=0\\m=1\end{cases}}.\)
+Với m =0
pt => \(x^3-7x+6=0\Leftrightarrow\left(x^3-x^2\right)+\left(x^2-x\right)-\left(6x-6\right)=0.\)
\(\left(x-1\right)\left(x^2+x-6\right)=0\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+3\right)=0\)
x-1=0 => x =1
x-2 =0 => x =2
x+3 =0 => x =- 3
\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)
\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)
\(\Leftrightarrow-2x+2mx-2=0\)
\(\Leftrightarrow2\left(mx-x-1\right)=0\)
\(\Leftrightarrow mx-x-1=0\)
\(\Leftrightarrow x\left(m-1\right)=1\)
\(\Leftrightarrow x=\frac{1}{m-1}\)
\(\Rightarrow x>0\Leftrightarrow\frac{1}{m-1}>0\Leftrightarrow m-1>0\Leftrightarrow m>1\)
Vậy \(m>1\)thì \(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)có nghiệm không âm
1. Thay m = 2 vào phương trình (1) ta có.
2x2 + 3x + 1 = 0
Có ( a - b + c = 2 - 3 + 1 = 0)
=> Phương trình (1) có nghiệm x1 = -1 ; x2 = - 1/2
2. Phương trình (1) có ▲ = (2m -1)2 - 8(m -1)
= 4m2 - 12m + 9 = (2m - 3)2 \(\ge\) 0 với mọi m.
=> Phương trình (1) luôn có hai nghiệm x1; x2 với mọi giá trị của m.
+ Theo hệ thức Vi ét ta có
\(\begin{cases}x_1+x_2=\frac{1-2m}{2}\\x_1x_2=\frac{m-1}{2}\end{cases}\)
+ Theo điều kiện đề bài: 4x12 + 4x22 + 2x1x2 = 1
<=> 4(x1 + x2)2 - 6 x1x2 = 1
<=> ( 1 - 2m)2 - 3m + 3 = 1
<=> 4m2 - 7m + 3 = 0
+ Có a + b + c = 0 => m1 = 1; m2 = 3/4
Vậy với m = 1 hoặc m = 3/4 thì phương trình (1) có hai nghiệm x1; x2 thoả mãn:
4x12 + 4x22 + 2x1x2 = 1
hơi dư nhỉ?? để làm lại há