Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 1 < x1 < x2 nên pt đã cho có 2 nghiệm dương phân biệt
Tức là \(\hept{\begin{cases}\Delta>0\\S>0\\P>0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(2m-3\right)^2-4m^2+12m>0\\2m-3>0\\m^2-3m>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4m^2-12m+9-4m^2+12m>0\\m>\frac{3}{2}\\x< 0\left(h\right)x>3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}9>0\left(LuonĐúng\right)\\x>3\end{cases}}\)
\(\Leftrightarrow x>3\)
Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=2m-3\\x_1x_2=m^2-3m\end{cases}}\)
Vì \(1< x_1< x_2\Rightarrow\hept{\begin{cases}x_1-1>0\\x_2-1>0\end{cases}}\)
\(\Rightarrow\left(x_1-1\right)\left(x_2-1\right)>0\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1>0\)
\(\Leftrightarrow m^2-3m-2m+3+1>0\)
\(\Leftrightarrow m^2-5m+4>0\)
\(\Leftrightarrow\orbr{\begin{cases}m< 1\\m>4\end{cases}}\)
Mà m > 3 nên m > 4
Vậy m > 4
có thể thu hẹp phạm vi lại không bạn ei!!!! thế này hơi rộng à nhax_x
Cho phương trình
\(8x^2-8x+m^2+1=\)0
x lầ ẩn số
Tìm m để phương trinhf có nghiệm 1/2 tìm nghiệm còn lại
Cho phương trinhf
\(x^2+m-2=mx+\)xx
x laf ẩn số
Chứng tỏ phương trinfh luôn có 2 nghiệm phân biệt x1,x2
x2 + m - 2= mx + xx
= xx- xx = mx + 2 - m
0= m(x-1) + 2
Suy ra m(x-1)= -2
Từ đó ta lập bảng thì ta thu được các giá trị khác biệt của x-1 suy ra ta có luôn có 2 nghiệm phân biệt x1 và x2
Để phương trình có nghiệm x1,x2 thì đen-ta \(\ge0.\)
\(\Leftrightarrow1-4m\ge0.\)
\(\Leftrightarrow m\le\frac{1}{4}.\)
Học tốt