K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2019

  m x   -   m 2   >   2 x   -   4   ⇔ (m - 2)x > (m - 2)(m + 2)

    Nếu m > 2 thì m – 2 > 0, bất phương trình có nghiệm là x > m + 2;

    Nếu m < 2 thì m – 2 < 0, bất phương trình có nghiệm là x < m + 2;

    Nếu m = 2 thì bất phương trình trở thành 0x > 0, bất phương trình vô nghiệm.

7 tháng 4 2017

\(\Leftrightarrow\left(m-2\right)x>m^2-4=\left(m-2\right)\left(m+2\right)\)

nếu m =2 => 0.x > 0.4 => vô nghiệm

Nếu m> 2 => m-2 >0 chia hai vế cho m-2<0

\(\Rightarrow x>m+2\)

Nếu m<2 => m-2 <0 chia hai cho m-2 <0

\(\Rightarrow x< m+2\)

Kết luận:

Nếu m =2 Phương trình vô nghiêm

nếu m> 2 có nghiệm: \(x>m+2\)

nếu m<2 có nghiệm: \(x< m+2\)

AH
Akai Haruma
Giáo viên
30 tháng 11 2018

Lời giải:
\(m^2(x-1)=mx-1\)

\(\Leftrightarrow m^2x-m^2=mx-1\)

\(\Leftrightarrow x(m^2-m)=m^2-1\)

\(\Leftrightarrow xm(m-1)=(m-1)(m+1)\)

+) Nếu $m=1$ thì $x.0=0$: PT có vô số nghiệm \(x\in\mathbb{R}\)

+) Nếu $m=0$ thì $x.0=-1$: PT vô nghiệm

+) Nếu $m\neq 1; m\neq 0$ thì PT có nghiệm duy nhất \(x=\frac{(m-1)(m+1)}{m(m-1)}=\frac{m+1}{m}\)

8 tháng 12 2015

pt tương đương với:

(m2 - 1)x = m + 1

(m - 1)(m+1) x = m+ 1

- Với m = -1 , pt trở thành 0x = 0, có vô số nghiệm

Với m = 1 , pt trở thành 0x = 2, vô nghiệm

- Với m#1 và m#-1 => m + 1 # 0 và m - 1 # 0 => x = 1/(m-1) 

25 tháng 6 2019

Phương trình ax + b = 0 hoặc ax = b vô nghiệm khi a= 0 và b ≠ 0 .

Xét phương án C:

m m x - 1 = m 2 + 1 x - m ⇔ m 2 x = m 2 x + 1 - m

⇔ 0 x = 1   (vô lí) nên phương trình này vô nghiệm.

Chọn C.

14 tháng 4 2017

Lời giải

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge m\left(1\right)\\\left(3x+2m\right)^2=\left(x-m\right)^2\left(2\right)\end{matrix}\right.\)

(2)\(\Leftrightarrow9x^2+12xm+4m^2=x^2-2mx+m^2\)

\(\Leftrightarrow8x^2+14mx+3m^2=0\)

\(\Delta'_x=49m^2-24m^2=25m^2\ge0\forall m\) => (2) luôn có nghiệm với mợi m

\(x=\dfrac{5\left|m\right|-7m}{8}\) (3)

so sánh (3) với (1)

\(\dfrac{5\left|m\right|-7m}{8}\ge m\Leftrightarrow\left|m\right|\ge3m\)(4)

m <0 hiển nhiên đúng

xét khi m\(\ge\)0

\(\left(4\right)\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m^2\ge9m^2\end{matrix}\right.\)\(\Rightarrow m\le0\)\(\Leftrightarrow m=0\)

Biện luận

(I)với m <0 có hai nghiệm

\(\left\{{}\begin{matrix}x_1=\dfrac{-3m}{2}\\x_2=\dfrac{-m}{4}\end{matrix}\right.\)

(II) với m= 0 có nghiệm kép x=0

(III) m>0 vô nghiệm

 

 

3 tháng 5 2017

b) \(\left|2x+m\right|=\left|x-2m+2\right|\Leftrightarrow\left[{}\begin{matrix}2x+m=x-2m+2\left(1\right)\\2x+m=-\left(x-2m+2\right)\left(2\right)\end{matrix}\right.\)
Xét (1): \(2x+m=x-2m+2\Leftrightarrow x=-3m+2\).
Xét (2): \(2x+m=-\left(x-2m+2\right)\Leftrightarrow x=\dfrac{m-2}{3}\)
Biện luận:
Với mọi m phương trình đều có hai nghiệm:
\(x=-3m+2;x=\dfrac{m-2}{3}\).

20 tháng 12 2022

a: =>mx-m^2-x+1<=0

=>x(m-1)<=m^2-1

TH1: m=1

=>0x<=0(luôn đúng)

TH2: m<>1

BPT có nghiệm là x<(m^2-1)/(m-1)=m+1

b: =>x(m-2)>3m-6

TH1: m=2

BPT sẽ là 0x>0(sai)

TH2: m<>2

BPT sẽ có nghiệm là x>3m-6/m-2=3

c: =>x(m-2)<4-m

TH1: m=2

=>0x<2(luôn đúng)
TH2: m<>2

=>\(x< \dfrac{4-m}{m-2}\)