K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Khi m=1 thì pt sẽ là: x+x-3=6x-6

=>6x-6=2x-3

=>4x=3

=>x=3/4

b: m^2x+m(x-3)=6(x-1)

=>x(m^2+m-6)=-6+3m=3m-6

=>x(m+3)(m-2)=3(m-2)

Để (1) có nghiệm duy nhất thì (m+3)(m-2)<>0

=>m<>-3 và m<>2

=>x=3/(m+3)

\(A=\dfrac{\left(\dfrac{3}{m+3}\right)^2+\dfrac{6}{m+3}+3}{\left(\dfrac{3}{m+3}\right)^2+2}\)

\(=\dfrac{9+6m+18+3m^2+18m+27}{\left(m+3\right)^2}:\dfrac{9+2m^2+12m+18}{\left(m+3\right)^2}\)

\(=\dfrac{3m^2+24m+54}{2m^2+12m+27}>=\dfrac{1}{2}\)

Dấu = xảy ra khi 6m^2+48m+108=2m^2+12m+27

=>4m^2+36m+81=0

=>m=-9/2

28 tháng 3 2022

a) khi m = 1 ta có pt
x + 1.(x-3) = 6.(x-1) 
=> x + x - 3 = 6x - 6
=> -4x = -3
=> x = 3/4
vậy với m=1 pt có no x =3/4

11 tháng 5 2020

Tui hổng biết

11 tháng 5 2020

Tui hổng biết

1, 2mx−1x−1=m−2 (x≠1)(x≠1)

⇔ 2mx−1=(m−2)(x−1)

⇔ 2mx−1=x(m−2)−m+2

⇔ x.(m+2)=−m+3x.(m+2)=−m+3

Nếu m+2=0m+2=0 hay m=−2m=−2 thì 0x=5

⇒ PT vô nghiệm

Nếu m+2≠0 hay m≠−2 thì x=3mm+2

2, 2x2x²−5x+3+9x2x²−x−3=6

⇔ 2x(3x−2).(x−1)+9x(3x−2).(x+1)=6

⇔ 2x(x+1)(3x−2).(x−1)(x+1)+9x(x−1)(3x−2).(x+1)(x−1)=6

⇒ 2x(x+1)+9x(x−1)=6(3x−2)(x+1)(x−1)

⇔ 11x²−7x=18x³−12x²−18x+12

⇔ 18x³−13x²−11x+12=0

18 tháng 4 2022

-ĐKXĐ: \(x\ne5\)

\(\dfrac{\left(m^2+1\right)x+1-2m^2}{x-5}=2m\)

\(\Leftrightarrow\dfrac{\left(m^2+1\right)x+1-2m^2}{x-5}=\dfrac{2m\left(x-5\right)}{x-5}\)

\(\Rightarrow m^2x+x+1-2m^2=2mx-10m\)

\(\Leftrightarrow m^2x+x-2mx=2m^2-10m-1\)

\(\Leftrightarrow x\left(m^2-2m+1\right)=2m^2-10m-1\)

\(\Leftrightarrow x=\dfrac{2m^2-10m-1}{\left(m-1\right)^2}\)

-Để phương trình có nghiệm duy nhất, đạt GT duy nhất thì \(\left(m-1\right)^2\ne0\Leftrightarrow m\ne1\)

18 tháng 4 2022

-Sửa lại:

-ĐKXĐ: \(x\ne5\)

\(\dfrac{\left(m^2+1\right)x+1-2m^2}{x-5}=2m\)

\(\Leftrightarrow\dfrac{\left(m^2+1\right)x+1-2m^2}{x-5}=\dfrac{2m\left(x-5\right)}{x-5}\)

\(\Rightarrow m^2x+x+1-2m^2=2mx-10m\)

\(\Leftrightarrow m^2x+x-2mx=2m^2-10m-1\)

\(\Leftrightarrow x\left(m^2-2m+1\right)=2m^2-10m-1\)

\(\Leftrightarrow x=\dfrac{2m^2-10m-1}{\left(m-1\right)^2}\)

-Để phương trình có nghiệm duy nhất, đạt GT duy nhất thì \(\dfrac{2m^2-10m-1}{\left(m-1\right)^2}\ne5\Leftrightarrow\dfrac{2m^2-10m-1}{m^2-2m+1}\ne5\Leftrightarrow\dfrac{2m^2-10m-1}{m^2-2m+1}\ne\dfrac{5m^2-10m+5}{m^2-2m+1}\Leftrightarrow2m^2-10m-1\ne5m^2-10m+5\Leftrightarrow3m^2+6\ne0\)(luôn đúng)

-Vậy với \(m\in R\) thì pt có nghiệm duy nhất.