Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow sinx=sin^2x\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\) \(\Rightarrow x=\left\{0;\pi;\frac{\pi}{2}\right\}\)
a.
\(1-sin^2x+1-2sin^2x+sinx+2=0\)
\(\Leftrightarrow-3sin^2x+sinx+4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\frac{4}{3}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=-\frac{\pi}{2}+k2\pi\)
b. ĐKXĐ; ...
\(5tanx-\frac{2}{tanx}-3=0\)
\(\Leftrightarrow5tan^2x-3tanx-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=-\frac{2}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=arctan\left(-\frac{2}{5}\right)+k\pi\end{matrix}\right.\)
e.
Ko rõ vế phải
f.
\(\Leftrightarrow1-3sin^2x.cos^2x=\frac{5}{6}\left(1-2sin^2x.cos^2x\right)\)
\(\Leftrightarrow1-\frac{3}{4}sin^22x=\frac{5}{6}\left(1-\frac{1}{2}sin^22x\right)\)
\(\Leftrightarrow1-2sin^22x=0\)
\(\Leftrightarrow cos4x=0\)
\(\Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{4}\)
\(sina+sinb+sinc+3=0\)
\(\Leftrightarrow\left(sina+1\right)+\left(sinb+1\right)+\left(sinc+1\right)=0\)
Do \(\left\{{}\begin{matrix}sina\ge-1\\sinb\ge-1\\sinc\ge-1\end{matrix}\right.\) ;\(\forall a;b;c\)
\(\Rightarrow\left(sina+1\right)+\left(sinb+1\right)+\left(sinc+1\right)\ge0\)
Dấu "=" xảy ra khi và chỉ khi \(sina=sinb=sinc=-1\)
\(\Rightarrow cosa=cosb=cosc=0\Rightarrow cosa+cosb+cosc+10=10\)
b/ \(sinx=1-sin^2x\Rightarrow sinx=cos^2x\)
\(\Rightarrow sin^2x=cos^4x\Rightarrow1-cos^2x=cos^4x\)
\(\Rightarrow cos^4x+cos^2x=1\Rightarrow\left(cos^4x+cos^2x\right)^2=1\)
\(\Rightarrow cos^8x+2cos^6x+cos^4x=1\)
d.
\(\Leftrightarrow\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=0\)
\(\Leftrightarrow sin^2x-cos^2x=0\)
\(\Leftrightarrow-cos2x=0\)
\(\Leftrightarrow2x=\frac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)
e. Đề thiếu
f.
\(\Leftrightarrow sin2x=\left(cos^2\frac{x}{2}-sin^2\frac{x}{2}\right)\left(cos^2\frac{x}{2}+sin^2\frac{x}{2}\right)\)
\(\Leftrightarrow sin2x=cos^2\frac{x}{2}-sin^2\frac{x}{2}\)
\(\Leftrightarrow sin2x=cosx\)
\(\Leftrightarrow sin2x=sin\left(\frac{\pi}{2}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}-x+k2\pi\\2x=x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
a.
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\sqrt{2}>1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=-\frac{\pi}{2}+k2\pi\)
b.
\(\Leftrightarrow sin2x=1\)
\(\Leftrightarrow2x=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\frac{\pi}{4}+k\pi\)
c.
\(\Leftrightarrow2sin2x.cos2x=-1\)
\(\Leftrightarrow sin4x=-1\)
\(\Leftrightarrow4x=-\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=-\frac{\pi}{8}+\frac{k\pi}{2}\)
Năm nay bạn lên 11 à, nếu đúng chắc bạn đang tự học phải không?
a) Bạn dùng máy tính (mode 5 3 rồi bấm 3= 1= =) máy hiện ra 2 nghiệm
x=-1/3 và x=0 (nghiệm x chính là cosx đó)
x=-1/3 (hơi lẻ đó)<=>cosx=-1/3 <=> x= (+) (-) arc cos(-1/3)+k2\(\Pi\) (k\(\in\)Z) (arc cos(-1/3) = SHIFT COS trong máy tính)
x=0<=> cosx=0<=> x=\(\dfrac{\Pi}{2}\)+l\(\Pi\) (l\(\in\)Z)
b) Bạn dùng công thức cos2x=2cos2x-1 là ra ngay thôi mà!
pt<=>cos2x+(2cos2x-1)2=0
<=>cos2x+4cos4x-4cos2x+1=0
<=>4cos4x-3cos2x+1=0 (pt vô nghiệm, thốn vl) chắc đề sai hay gì đó bạn ơi, thường người ta ít cho vô nghiệm lắm!
c) Đặt t=sinx+cosx =>t2=sin2x+cos2x+2sinxcosx=1+2sinxcosx<=>2sinxcosx=t2-1
PT trở thành:
t+t2-1=0<=>\(\left[{}\begin{matrix}t1=\dfrac{-1+\sqrt{5}}{2}\\t2=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}six+cosx=t1\\sinx+cosx=t2\end{matrix}\right.\)
Mà sinxx+ cosx=\(\sqrt{2}\) sin(x+\(\dfrac{\Pi}{4}\)) ct ày không biết bạn học chưa nhưng nó sử dụng rất nhiều đấy cố mà nhớ nhé!
1) sin(x+pi/4)=\(\dfrac{\sqrt{10}-\sqrt{2}}{4}\)=A<=>x=arc sinA-pi/4+k2pi (k thuộc Z) hoặc x=pi-arc sinA-pi/4+k2pi
2) sin(x+pi/4)=\(\dfrac{-\sqrt{10}-\sqrt{2}}{4}\)=B<=>x=......... như trên vậy đó hihi!
d)ĐIều kiện: cosx khác 0 <=> x\(\ne\)pi/2+kpi và cos2x khác 0<=> x \(\ne\)\(\dfrac{\Pi}{4}\)+kpi/2
pt<=>\(\dfrac{sinx}{cosx}\)+\(\dfrac{sin2x}{cos2x}\)=0
<=>sinx.cos2x+sin2x.cosx=0
<=>sinx.cos2x+2sinx.cos2x=0 (sin2x=2sinx.cosx)
<=>sinx(cos2x+2cos2x)=0
<=>sinx(2cos2x-1+2cos2x)=0
<=>sinx(4cos2x-1)=0
1) sinx=0<=>x=kpi (nhận)
2)4cos2x-1=0<=>cosx=1/2<=>x=+ - pi/3+k2pi Hoặc cosx=-1/2
<=>x= + - 2pi/3+kpi(nhận)
Chúc bạn học tốt !
À quên câu c) thiếu điều kiện của t rồi
\(-\sqrt{2}\le t\le\sqrt{2}\)
a, 3sin2x -5sinx +2=0
<=> sinx =1 hoặc sinx = 2/3
<=> x=π/2 +k2π ; x=arcsin2/3 + k2π hoặc x= π - arcsin2/3 + k2π
b, bn có chép đúng đề bài không.Mình tính ra lẻ
b) phần b giải ntn nhé
\(2\left(cos^2x+sin^2x\right)-sinx-cosx-1=0\Leftrightarrow2.1-sinx-cosx-1=0\Leftrightarrow sinx+cosx=1\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=1\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)