Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 - 2( m + 1 )x + 2m - 4 = 0
1. Δ = b2 - 4ac = [ -2( m + 1 ) ]2 - 4( 2m - 4 )
= 4( m + 1 )2 - 8m + 16
= 4( m2 + 2m + 1 ) - 8m + 16
= 4m2 + 8m + 4 - 8m + 16
= 4m2 + 20
Dễ nhận thấy Δ ≥ 20 > 0 ∀ m
hay phương trình luôn có nghiệm với mọi m ( đpcm )
2. Dù là nghiệm kép hay nghiệm phân biệt thì hai nghiệm của phương trình đều viết được dưới dạng
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\text{Δ}}}{2a}=\frac{2m+2+\sqrt{4m^2+20}}{2}\\x_2=\frac{-b-\sqrt{\text{Δ}}}{2a}=\frac{2m+2-\sqrt{4m^2+20}}{2}\end{cases}}\)
Khi đó \(x_1^2+x_2^2=\left(\frac{2m+2+\sqrt{4m^2+20}}{2}\right)^2+\left(\frac{2m+2-\sqrt{4m^2+20}}{2}\right)^2\)
\(=\left(\frac{2m+2+2\sqrt{m^2+5}}{2}\right)^2+\left(\frac{2m+2-2\sqrt{m^2+5}}{2}\right)^2\)( em đưa 2 ra ngoài căn chắc chị hiểu )
\(=\left(\frac{2\left(m+1+\sqrt{m^2+5}\right)}{2}\right)^2+\left(\frac{2\left(m+1-\sqrt{m^2+5}\right)}{2}\right)^2\)
\(=\left(m+1+\sqrt{m^2+5}\right)^2+\left(m+1-\sqrt{m^2+5}\right)^2\)
\(=\left[\left(m+1\right)+\sqrt{m^2+5}\right]^2+\left[\left(m+1\right)-\sqrt{m^2+5}\right]^2\)
\(=\left(m+1\right)^2+2\left(m+1\right)\sqrt{m^2+5}+m^2+5+\left(m+1\right)^2-2\left(m+1\right)\sqrt{m^2+5}+m^2+5\)
\(=2\left(m+1\right)^2+2m^2+10\)
\(=2\left(m^2+2m+1\right)+2m^2+10\)
\(=2m^2+4m+2+2m^2+10=4m^2+4m+12\)
3. Em mới lớp 8 nên chưa học Min Max mấy dạng này chị thông cảm :(((((((((
à xin phép em sửa một tí :))
1. ... = 4m2 + 20
Dễ nhận thấy Δ ≥ 20 > 0 ∀ m
hay phương trình luôn có hai nghiệm phân biệt với mọi m ( đpcm )
2. Vì phương trình luôn có hai nghiệm phân biệt nên hai nghiệm đó luôn viết được dưới dạng : ...
em quên nhìn cái " luôn có hai nghiệm phân biệt " sorry chị :(
| x12 - x22| = 15 mình viết thiếu giải hộ mình với.Cảm ơn bạn
B1 : giải PT (m tham số ) bằng cách tính denta > 0
B2 : áp dụng hệ thức VI-ÉT .. X1 + X2 = -b/a
.. X1X2 = c/a
B3: thay x1 + x2 = -b/a vào pt (2)
thay x1x2 = c/a vào pt (2)
a) Hoành độ giao điểm của ( P ) và ( d ) là nghiệm phương trình:
\(x^2=2mx-2m+3\) (2)
<=> \(x^2-2mx+2m-3=0\)
Có: \(\Delta'=m^2-\left(2m-3\right)=m^2-2m+3=\left(m-1\right)^2+2>0\)với mọi m
=> Với mọi m phương trình (2) luôn có hai nghiệm phân biết
=> Với mọi m (d) luôn cắt ( P ) tại hai điểm phân biệt
___________
c) Để phương trình (1) có nghiệm điều kiện là: \(\Delta'=\left(k-1\right)^2-\left(k-3\right)=k^2-3k+4=\left(k-\frac{3}{2}\right)^2+\frac{7}{4}>0\)với mọi m
=> Phương trình (1) có 2 nghiệm \(x_1;x_2\)với mọi m
Áp dụng định lí viets ta có: \(\hept{\begin{cases}x_1+x_2=2\left(k-1\right)\\x_1.x_2=k-3\end{cases}}\)mà \(x_1=\frac{5}{3}x_2\)
nên : \(\frac{5}{3}x_2+x_2=2k-2\)<=> \(\frac{8}{3}x_2=2k-2\)<=> \(x_2=\frac{3}{4}\left(k-1\right)\)
khi đó: \(x_1=\frac{5}{3}x_2=\frac{5}{4}\left(k-1\right)\)
Suy ra \(x_1.x_2=k-3\)<=> \(\frac{15}{16}\left(k-1\right)^2=k-3\)
<=> \(15k^2-46k+63=0\)(3)
có: \(\Delta\)<0
=> (3) vô nghiệm
=> không tồn tại k
Δ=(2m)^2-4(m^2+2m+3)
=4m^2-4m^2-8m-12=-8m-12
Để PT có 2 nghiệm pb thì -8m-12>0
=>-8m>12
=>m<-3/2
x1^3+x2^3=108
=>(x1+x2)^3-3x1x2(x1+x2)=108
=>(-2m)^3-3(m^2+2m+3)*(-2m)=108
=>-8m^3+6m(m^2+2m+3)=108
=>-8m^3+6m^3+12m^2+18m-108=0
=>-2m^3+12m^2+18m-108=0
=>-2m^2(m-6)+18(m-6)=0
=>(m-6)(-2m^2+18)=0
=>m=-3