Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=m^2-8\left(m-2\right)=\left(m-4\right)^2\ge0;\forall m\)
\(\Rightarrow\) Phương trình luôn có nghiệm với mọi m
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{m}{2}\\x_1x_2=\frac{m-2}{2}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}y_1+y_2=x_1+x_2\\y_1^2+y_2^2=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y_1+y_2=\frac{m}{2}\\\left(y_1+y_2\right)^2-2y_1y_2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y_1+y_2=\frac{m}{2}\\y_1y_2=\frac{m^2}{8}-\frac{1}{2}\end{matrix}\right.\)
Theo Viet đảo, \(y_1;y_2\) là nghiệm:
\(y^2-\frac{m}{2}y+\frac{m^2}{8}-\frac{1}{2}=0\Leftrightarrow8y^2-4m.y+m^2-4=0\)
a) Hoành độ giao điểm của ( P ) và ( d ) là nghiệm phương trình:
\(x^2=2mx-2m+3\) (2)
<=> \(x^2-2mx+2m-3=0\)
Có: \(\Delta'=m^2-\left(2m-3\right)=m^2-2m+3=\left(m-1\right)^2+2>0\)với mọi m
=> Với mọi m phương trình (2) luôn có hai nghiệm phân biết
=> Với mọi m (d) luôn cắt ( P ) tại hai điểm phân biệt
___________
c) Để phương trình (1) có nghiệm điều kiện là: \(\Delta'=\left(k-1\right)^2-\left(k-3\right)=k^2-3k+4=\left(k-\frac{3}{2}\right)^2+\frac{7}{4}>0\)với mọi m
=> Phương trình (1) có 2 nghiệm \(x_1;x_2\)với mọi m
Áp dụng định lí viets ta có: \(\hept{\begin{cases}x_1+x_2=2\left(k-1\right)\\x_1.x_2=k-3\end{cases}}\)mà \(x_1=\frac{5}{3}x_2\)
nên : \(\frac{5}{3}x_2+x_2=2k-2\)<=> \(\frac{8}{3}x_2=2k-2\)<=> \(x_2=\frac{3}{4}\left(k-1\right)\)
khi đó: \(x_1=\frac{5}{3}x_2=\frac{5}{4}\left(k-1\right)\)
Suy ra \(x_1.x_2=k-3\)<=> \(\frac{15}{16}\left(k-1\right)^2=k-3\)
<=> \(15k^2-46k+63=0\)(3)
có: \(\Delta\)<0
=> (3) vô nghiệm
=> không tồn tại k
Bài 2. \(x^2-mx+m-1=0\)(1)
a) Phương trình (1) có: \(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0,\forall m\)
Suy ra phương trình luôn có nghiệm với mọi m
b) Áp dụng định lí Vi ét ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=m-1\end{cases}}\)
Ta có: \(x_1^2-x_2^2+x_1+x_2=0\Leftrightarrow\left(x_1+x_2\right)\left(x_1-x_2\right)+\left(x_1+x_2\right)=0\Leftrightarrow\left(x_1+x_2\right)\left(x_1-x_2\right)=0\)
<=>\(\orbr{\begin{cases}x_1+x_2=0\\x_1-x_2+1=0\end{cases}}\)
+) Với \(x_1+x_2=0\Leftrightarrow m=0\)(tm)
+) Với \(x_1-x_2+1=0\Leftrightarrow x_1=-1+x_2\)
Ta có \(x_1+x_2=m\Leftrightarrow-1+x_2+x_2=m\Leftrightarrow x_2=\frac{m+1}{2}\)
=> \(x_1=-1+x_2=-1+\frac{m+1}{2}=\frac{m-1}{2}\)
ta lại có: \(x_1.x_2=m-1\Leftrightarrow\frac{m+1}{2}.\frac{m-1}{2}=m-1\Leftrightarrow\orbr{\begin{cases}m-1=0\\\frac{m+1}{4}=1\end{cases}\Leftrightarrow\orbr{\begin{cases}m=1\\m=3\end{cases}}}\)(TM)
Vậy
Sửa lại :
2b)
\(x_1^2-x_2^2+x_1-x_2=0\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2+1\right)=0\Leftrightarrow\orbr{\begin{cases}x_1-x_2=0\\x_1+x_2+1=0\end{cases}}\)
Với \(x_1-x_2=0\Leftrightarrow x_1=x_2\)
Ta có:\(x_1+x_2=m\Leftrightarrow2x_1=m\Leftrightarrow x_1=x_2=\frac{m}{2}\)
\(x_1.x_2=m-1\Leftrightarrow\frac{m}{2}.\frac{m}{2}=m-1\Leftrightarrow m^2=4m-4\Leftrightarrow\left(m-2\right)^2=0\Leftrightarrow m=2\)
+) Với \(x_1+x_2+1=0\Leftrightarrow m+1=0\Leftrightarrow m=-1\)
Vậy m=-1 hoặc m=2
(a=2, b=-m, c=m-2)
=>\(b^2-4ac=m^2-4\cdot2\cdot\left(m-2\right)=m^2-8m+16=\left(m-4\right)^2>=0\)
=> pt có luôn có ngiệm với mọi m