Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow A=\dfrac{\left(x-a\right)^2-\left(x+a\right)^2+3a^2+a}{\left(x-a\right)\left(x+a\right)}\)
\(\Leftrightarrow A=\dfrac{-4ax+3a^2+a}{\left(x-a\right)\left(x+a\right)}\Leftrightarrow\left\{{}\begin{matrix}\left|x\right|\ne a\\4ax=a\left(3a+1\right)\left(1\right)\end{matrix}\right.\)
a) với a=-3
\(\left(1\right)\Leftrightarrow4x=3.\left(-3\right)+1\Rightarrow x=-2\)(NHAN)
b)với a=-1
\(\left(1\right)\Leftrightarrow4x=3.\left(-1\right)+1\Rightarrow x=-\dfrac{2}{4}=-\dfrac{1}{2}\)(NHẬN)
c)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\x=\dfrac{3a+1}{4}=0,5\Rightarrow a=\dfrac{1}{3}\left(nhan\right)\end{matrix}\right.\)
a: Khi a=-3 thì phương trình sẽ là:
\(\dfrac{x+3}{x-3}-\dfrac{x-3}{x+3}+\dfrac{3\cdot9-3}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow x^2+6x+9-x^2+6x-9+24=0\)
=>12x=-24
hay x=-2
b: Khi a=1 thì phương trình trở thành:
\(\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}+\dfrac{4}{\left(x-1\right)\left(x+1\right)}=0\)
\(\Leftrightarrow x^2-2x+1-x^2-2x-1+4=0\)
=>-4x+4=0
hay x=1(loại)
a: \(A=\left(x^2+x+1-x\right):\dfrac{1-x^2}{\left(1-x\right)-x^2\left(1-x\right)}\)
\(=\left(x^2+1\right)\cdot\left(1-x\right)\)
b: Để A<0 thì 1-x<0
=>x>1
c: |x-4|=5
=>x-4=5 hoặc x-4=-5
=>x=9(nhận) hoặc x=-1(loại)
Thay x=9 vào A, ta được:
\(A=\left(9^2+1\right)\left(1-9\right)=82\cdot\left(-8\right)=-656\)