\(x\) :\(9x^2-25-k^2-2kx=0\)

a....">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:Khi k=0 thì \(9x^2-25=0\)

=>x=5/3hoặc x=-5/3

b: Khi x=-1 thì pt sẽ là:

\(9-25-k^2+2k=0\)

\(\Leftrightarrow-k^2+2k-16=0\)

\(\Leftrightarrow k^2-2k+16=0\)

\(\Leftrightarrow\left(k-1\right)^2+15=0\)(vô lý)

25 tháng 4 2017

a) Thay k = 0 vào ta có pt: 9x- 25 = 0 nên x = 5/3 hoặc x = -5/3

b) Để pt nhận x = -1 làm nghiệm thì: 9 - 25 - k+ 2k = 0 tương đương - k+ 2k - 16 =0

Mặt khác - k+ 2k - 16 = - ( k2 - 2k + 16) = -[(k - 1)+ 15] < 0 

Suy ra không có giá trị nào của k thỏa mãn yêu cầu bài toán

14 tháng 6 2017

a,Với k =0 thì biểu thức bằng:​

4x3-25=0 hay 4x3 = 25 nên x=\(\sqrt[3]{\frac{25}{4}}\)

b,Với k =(-3) thì biểu thức bằng:\(4x^3-25+9-12x=0\)

hay :\(4x^3-12x=16\)

\(4x\left(x^2-3\right)=16\)

\(x^2-3=\frac{4}{x}\) nên suy ra \(\left(x^2-3\right):\frac{4}{x}=1\)

hay \(x^3-3x=4\)

nên nếu với x là một số tự nhiên thì phương trình vô nghiệm

21 tháng 6 2017

khó quá nhỉ

14 tháng 4 2020

k=0 => \(9x^2-25=0\)

\(\Leftrightarrow x^2=\frac{25}{9}\Leftrightarrow x=\pm\frac{5}{3}\)

x=-1 => 9-25-k2=2k=0

=> k2-2k+16=0

=> không có giá trị k thỏa mãn

13 tháng 2 2020

a) k = 0 thì pt trở thành \(9x^2-25=0\Leftrightarrow x^2=\frac{25}{9}\)

\(\Leftrightarrow x=\pm\sqrt{\frac{5}{3}}\)

b) Thay x = -1 vào pt 

\(9-25-k^2+2k=0\Leftrightarrow k^2-2k=-16\)

Ta có \(\Delta=2^2-4.16< 0\)

Vậy ko có k để x=-1 là nghiệm

a: Khi k=0 thì PT sẽ là:

9x^2-25=0

=>x=5/3 hoặc x=-5/3

b: Thay x=-1 vào pt, ta sẽ được:

-k^2+2k+9-25=0

=>-k^2+2k-16=0

=>\(k\in\varnothing\)

x=-1 

=>\(PT=9-25-k^2+2k=0=>k^2-2k+16=0\)

=> o có giá trị k thỏa mãn 

Chỉ vậy thôi à, còn chi tiết hơn ko, cái này tớ cũng giải được nhưng mà thắc mắc cái phần vì sao k2 - 2k + 16  lại ko có giá trị k thỏa mãn