Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra , ta có :
2(x2 + m + 1) = (1+m) (1-m)
(=) 2(x2 + m + 1) = 1 - m2
(=) x2 + m +1 - \(\frac{1+m^2}{2}\)
Vậy để phương trình có nghiệm thì m \(\ge\)0
Chúc bạn học tốt =))
1. Thay m = 2 vào phương trình (1) ta có.
2x2 + 3x + 1 = 0
Có ( a - b + c = 2 - 3 + 1 = 0)
=> Phương trình (1) có nghiệm x1 = -1 ; x2 = - 1/2
2. Phương trình (1) có ▲ = (2m -1)2 - 8(m -1)
= 4m2 - 12m + 9 = (2m - 3)2 \(\ge\) 0 với mọi m.
=> Phương trình (1) luôn có hai nghiệm x1; x2 với mọi giá trị của m.
+ Theo hệ thức Vi ét ta có
\(\begin{cases}x_1+x_2=\frac{1-2m}{2}\\x_1x_2=\frac{m-1}{2}\end{cases}\)
+ Theo điều kiện đề bài: 4x12 + 4x22 + 2x1x2 = 1
<=> 4(x1 + x2)2 - 6 x1x2 = 1
<=> ( 1 - 2m)2 - 3m + 3 = 1
<=> 4m2 - 7m + 3 = 0
+ Có a + b + c = 0 => m1 = 1; m2 = 3/4
Vậy với m = 1 hoặc m = 3/4 thì phương trình (1) có hai nghiệm x1; x2 thoả mãn:
4x12 + 4x22 + 2x1x2 = 1
a) 2x+m+1 =0
2x = - m -1
x =( -m-1)/2 >0
m < -1 ( khi nhân 2 vế của bđt với 1 số âm thì bđt đảo chiều)
b) x -1 -m2 =0
x = m2 +1 <0 ( vô nghĩa vì với mọi m thì m2 +1 luôn >0 )
m=-1 thi phuong trinh luon co nghiem la 0