K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2018

a) Lấy hai điểm A(0;4) và B(2;0) thuộc d. Gọi A′, B′ theo thứ tự là ảnh của A và B qua phép vị tự tâm O tỉ số k = 3. Khi đó ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

 

 

Vì  O A →   =   ( 0 ; 4 ) nên  O A ' →   =   ( 0 ; 12 ) . Do đó A′ = (0;12).

Tương tự B′ = (6;0); d1 chính là đường thẳng A'B' nên nó có phương trình:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Có thể giải tương tự như câu a) .

Sau đây ta sẽ giải bằng cách khác.

Vì d 2   / /   d nên phương trình của d 2  có dạng 2x + y + C = 0.

Gọi A′ = (x′;y′) là ảnh của A qua phép vị tự đó thì ta có:

I A ' →   =   − 2 I A →  hay x′ + 1 = −2, y′ − 2 = −4

Suy ra x′ = −3, y′ = −2

Do A' thuộc d 2  nên 2.(−3) – 2 + C = 0.

Từ đó suy ra C = 8

Phương trình của d 2  là 2x + y + 8 = 0

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

24 tháng 8 2019

Số phát biểuđúng:1.     Qua phép vị tự có tỉ số  k ≠ 0   , đường thẳng đi qua tâm vị tự sẽ biến thành chính nó2.     Qua phép vị tự có tỉ số k ≠ 0 , đường tròn có tâm là tâm vị tự sẽ biến thành chính nó.3.     Qua phép vị tự có tỉ số k ≠ 1 , không có đường tròn nào biến thành chính nó.4.     Qua phép vị...
Đọc tiếp

Số phát biểuđúng:

1.     Qua phép vị tự có tỉ số  k ≠ 0   , đường thẳng đi qua tâm vị tự sẽ biến thành chính nó

2.     Qua phép vị tự có tỉ số k ≠ 0 , đường tròn có tâm là tâm vị tự sẽ biến thành chính nó.

3.     Qua phép vị tự có tỉ số k ≠ 1 , không có đường tròn nào biến thành chính nó.

4.     Qua phép vị tự V(O;1), đường tròn tâm O sẽ biến thành chính nó.

5.     Phép vị tự tỉ số k biến đường thẳng thành đường thẳng song song hoặc trùng với đường thẳng đó

6.     Phép vị tự tỉ số k biến đoạn thẳng thành đoạn thẳng mà độ dài được nhân lên với hệ số k

7.     Trong phép vị tự tâm O, tỉ số k, nếu k < 0 thì điểm M và ảnh của nó ở về hai phía đối với tâm O.

8.     Mọi phép dời hình đều là phép đồng dạng với tỉ số k = 1

9.     Phép hợp thành của một phép vị tự tỉ số k và một phép đối xứng tâm là phép đồng dạng tỉ số

10.    Hai đường tròn bất kì luôn có phép vị tự biến đường này thành đường kia

11.    Khi k = 1 , phép vị tự là phép đồng nhất

12.    Phép vị tự biến tứ giác thành tứ giác bằng nó

13.    Khi k = 1, phép đồng dạng là phép dời hình

14.    Phép đối xứng tâm là phép đồng dạng tỉ số k = 1

A.9

B.10

C.11

D.12

1
15 tháng 8 2017

Đáp án C

Những phát biểuđúng: 1; 4; 5; 6; 7; 8; 9; 10; 11; 13; 14

2. Qua phép vị tự có tỉ số , đường tròn có tâm là tâm vị tự sẽ biến thành 1 đường tròn đồng tâm với đường tròn ban đầu và có bán kính = k. bán kính đường tròn ban đầu.

3. Qua phép vị tự có tỉ số  đường tròn biến thành chính nó.

12. Phép vị tự với tỉ số k = biến tứ giác thành tứ giác bằng nó

6 tháng 8 2019

Đáp án B

(C) có tâm O(2;–2),  bán kính 3

  O ' = V I ; k ( O ) => 2 O I → = O ' I → =>O’(3;–1), bán kính 6

Phương trình đường tròn (C’):  x − 3 2 + y + 1 2 = 36

9 tháng 6 2018

a) Gọi M', d' và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua O.

Dùng biểu thức tọa độ của phép đối xứng qua gốc tọa độ ta có :

M′ = (2; −3), phương trình của d′: 3x – y – 9 = 0, phương trình của đường tròn (C′): x 2   +   y 2   −   2 x   +   6 y   +   6   =   0 .

b) Gọi M', d' và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua I .

Vì I là trung điểm của MM' nên M′ = (4;1)

Vì d' song song với d nên d' có phương trình 3x – y + C = 0.

Lấy một điểm trên d, chẳng hạn N(0; 9).

Khi đó ảnh của N qua phép đối xứng qua tâm I là N′(2; −5).

Vì N' thuộc d nên ta có 3.2 − (−5) + C = 0. Từ đó suy ra C = -11.

Vậy phương trình của d' là 3x – y – 11 = 0.

Để tìm (C'), trước hết ta để ý rằng (C) là đường tròn tâm J(−1; 3),

bán kính bằng 2. Ảnh của J qua phép đối xứng qua tâm I là J′(3; 1).

Do đó (C') là đường tròn tâm J' bán kính bằng 2. Phương trình của (C') là x   −   3 2   +   y   −   1 2   =   4 .