Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kết quả của phép tính -1-1/2-1/4-1/8-...-1/1024
Giúp mk vs nhanh nhanh nhe đg thi violympic !!!!!!!!!
Đặt A = -1-1/2-1/4-.....-1/1024
= -(1+1/2+1/4+.....+1/1024)
= -(1+1/2+1/2^2+.....+1/2^10)
2A = -(2+1+1/2+....+1/2^9)
A=2A-A= -(2+1+1/2+....+1/2^9-1-1/2-.....-1/2^10) = -(2-1/2^10) = -2047/1024
Tk mk nha
\(-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{6}-.....-\frac{1}{1024}\)
\(=-1-\left(1-\frac{1}{2}\right)-\left(\frac{1}{2}-\frac{1}{4}\right)-.....-\left(\frac{1}{512}-\frac{1}{1024}\right)\)
\(=-1-\left(1-\frac{1}{1024}\right)\)
\(=-1-\frac{1023}{1024}\)
\(=-\frac{2047}{1024}\)
thi violympic mà tra kiểu này thì có mà thi chơi chứ hiểu gì
\(-1-\left(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\right)=-1-\frac{1}{1024}=\frac{-1025}{1024}\)
\(A=\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
\(2A=\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-..-\frac{1}{512}\)
\(2A-A=\left(\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-..-\frac{1}{512}\right)-\left(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\right)\)
\(A=\frac{1}{4}+\frac{1}{4}-\frac{1}{2}+\frac{1}{1024}\)
\(A=\frac{1}{1024}\)
\(B=\frac{1}{2}-\frac{1}{4}-...-\frac{1}{1024}\)
\(=-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)\)
\(=-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
Đặt \(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}=A\)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^9}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
\(A=1-\frac{1}{2^{10}}\).Thay A vào ta đc: \(B=-\left(1-\frac{1}{2^{10}}\right)\)
\(B=-\left(1-\frac{1}{1024}\right)\)
\(B=-\frac{1023}{1024}\)
nhấn vào đúng 0 sẽ ra kết quả mình làm bài này rồi
\(A=-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
\(A=-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
\(-A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(-2A=2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\)
\(-2A+A=\left(2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
\(-A=2-\frac{1}{1024}\)
\(A=\frac{1}{1024}-2\)