K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2023

\(\dfrac{x-2}{x+2}\)

\(=\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x+2\right)}\)

\(=\dfrac{x^2-2^2}{\left(x+2\right)^2}\)

\(=\dfrac{x^2-4}{x^2+4x+4}\)

Vậy đã biến đổi phân thức thành một phân thức bằng nó và có tử bằng với đa thức: \(A=x^2-4\)

24 tháng 7 2023

Mik cảm ơn ạ

28 tháng 6 2017

Tính chất cơ bản của phân thức

11 tháng 11 2017

Bài 6:(Sbt/25) Dùng tính chất cơ bản của phân thức để biến đổi mỗi cặp phân thức sau thành một cặp phân thức bằng nó và có cùng tử thức :

a) \(\dfrac{3}{x+2}\)\(\dfrac{x-1}{5x}\)

Ta có:

\(\dfrac{3}{x+2}\) = \(\dfrac{3.\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}\) = \(\dfrac{3x-3}{x^2+x-2}\)

\(\dfrac{x-1}{5x}\) = \(\dfrac{\left(x-1\right).3}{5x.3}\) =\(\dfrac{3x-3}{15x}\)

Vậy .....

b. \(\dfrac{x+5}{4x}\)\(\dfrac{x^2-25}{2x+3}\)

Ta có:

\(\dfrac{x+5}{4x}\) = \(\dfrac{\left(x+5\right)\left(x-5\right)}{4x.\left(x-5\right)}\) = \(\dfrac{x^2-25}{4x^2-20x}\)

\(\dfrac{x^2-25}{2x+3}\)

Vậy .....

24 tháng 7 2023

\(\dfrac{x^2-1}{\left(x+1\right)\left(x-3\right)}\)

\(=\dfrac{x^2-1^2}{\left(x+1\right)\left(x-3\right)}\)

\(=\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-3\right)}\)

\(=\dfrac{x-1}{x-3}\)

Vậy đã biến đổi phân thức đó thành một phân thức bằng nó và có tử bằng với đa thức \(A=x-1\)

24 tháng 7 2023

Mik cảm ơn cọu nhìu ạ :>

28 tháng 11 2021

EM MỚI LỚP 3 LÊN EM  KO BIẾT GÌ HẾT

CHẮC CHỊ HOẶC ANH NÊN TRA GOOGLE

28 tháng 11 2021

Tham khảo lấy nguồn từ Vietjack.com 

undefined

\(\dfrac{x^3-x^2-x+1}{x^4-2x^2+1}=\dfrac{x^2\left(x-1\right)-\left(x-1\right)}{\left(x-1\right)^2\cdot\left(x+1\right)^2}=\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)}{\left(x-1\right)^2\cdot\left(x+1\right)^2}=\dfrac{1}{x+1}\)

\(\dfrac{5x^3+10x^2+5x}{x^3+3x^2+3x+1}=\dfrac{5x\left(x+1\right)^2}{\left(x+1\right)^3}=\dfrac{5x}{x+1}\)

16 tháng 11 2019

\(\frac{x^2+xy+y^2}{x-y}=\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)^2}=\frac{x^3-y^3}{\left(x-y\right)^2}\)

17 tháng 11 2019

\(\frac{x^2+xy+y^2}{x-y}\)

\(=\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)^2}\)

\(=\frac{x^3-y^3}{x^2-2xy+y^2}\)