Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề : \(\frac{1-3x}{2x}+\frac{3x-2}{2x-1}+\frac{3x-2^2}{4x^2-2x}\)
\(=\frac{\left(1-3x\right)\left(2x-1\right)}{2x\left(2x-1\right)}+\frac{2x\left(3x-2\right)}{2x\left(2x-1\right)}+\frac{3x-4}{2x\left(2x-1\right)}\)
\(=\frac{2x-1-6x+3x+6x^2-4x+3x-4}{2x\left(2x-1\right)}\)
\(=\frac{-2x+6x^2-5}{2x\left(2x-1\right)}\)
Thay x = 1/234 vào tính là ra giá trị biểu thức nhé !!!
\(\left(-x-1\right)\left(x+7\right)=\left(-x-1\right)\left(-2x-5\right)\)
\(\Leftrightarrow\left(-x-1\right)\left(x+7\right)- \left(-x-1\right)\left(-2x-5\right)=0\)
\(\Leftrightarrow\left(-x-1\right)\left(x+7+2x+5\right)=0\)
\(\Leftrightarrow\left(-x-1\right)\left(3x+12\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}-x-1=0\\3x+12=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\x=-4\end{cases}}}\)
Vậy : Tập nghiệm của PT là S={-1;-4}
#H
\(\left(-x-1\right)\left(x+7\right)=\left(-x-1\right)\left(-2x-5\right)\)
\(\Leftrightarrow\left(-x-1\right)\left(x+7\right)-\left(-x-1\right)\left(-2x-5\right)=0\)
\(\Leftrightarrow\left(-x-1\right)\left[\left(x+7\right)-\left(-2x-5\right)\right]=0\)
\(\Leftrightarrow\left(-x-1\right)\left(x+7+2x+5\right)=\left(-x-1\right)\left(3x+12\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x-1=0\\3x+12=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}}\)
Vậy tập nghiệm của pt \(S=\left\{-1;-4\right\}\)
\(\left(3x+12\right)\left(3x-3\right)=\left(3x+12\right)\left(4x-5\right)\)
\(\Leftrightarrow\left(3x+12\right)\left(3x-3\right)-\left(3x+12\right)\left(4x-5\right)=0\)
\(\Leftrightarrow\left(3x+12\right)\left(3x-3-4x+5\right)=0\)
\(\Leftrightarrow\left(3x+12\right)\left(-x+2\right)=0\Leftrightarrow x=-4;x=2\)
Vậy tập nghiệm của phương trình là S = { -4 ; 2 }
( 3x + 12 )( 3x - 3 ) = ( 3x + 12 )( 4x - 5 )
<=> 9( x + 4 )( x - 1 ) - 3( x + 4 )( 4x - 5 ) = 0
<=> 3( x + 4 )[ 3( x - 1 ) - ( 4x - 5 ) ] = 0
<=> 3( x + 4 )( 3x - 3 - 4x + 5 ) = 0
<=> 3( x + 4 )( 2 - x ) = 0
<=> x = -4 hoặc x = 2
Vậy phương trình có tập nghiệm S = { -4 ; 2 }
a: Để B nguyên thì x^2+1+2 chia hết cho x^2+1
=>\(x^2+1\in\left\{1;2\right\}\)
hay \(x\in\left\{0;1;-1\right\}\)
b: \(B=\dfrac{x^2+3}{x^2+1}=1+\dfrac{2}{x^2+1}< =1+2=3\)
=>0<=B<=3
B=0 thì x^2+3=0(loại)
B=2 thì 2/x^2+1=1
=>x^2+1=2
=>\(x\in\left\{1;-1\right\}\)
B=3 thì 2/x^2+1=2
=>x^2+1=1
=>x=0