K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=\dfrac{3\left(1-2x\right)}{2x\left(x^2+1\right)-\left(x^2+1\right)}\)

\(=\dfrac{-3\left(2x-1\right)}{\left(x^2+1\right)\left(2x-1\right)}=\dfrac{-3}{x^2+1}\)

b: Khi x=3 thì \(A=\dfrac{-3}{3^2+1}=-\dfrac{3}{10}\)

c: x^2+1>=0

=>3/x^2+1>=0

=>-3/x^2+1<=0

=>A<=0(ĐPCM)

28 tháng 12 2022

\(P=\dfrac{3x^2+6x+3}{x+1}\)

\(a,\) Điều kiện xác định: \(x+1\ne0\Leftrightarrow x\ne-1\)

\(b,P=\dfrac{3x^2+6x+3}{x+1}=\dfrac{3\left(x^2+2x+1\right)}{x+1}=\dfrac{3\left(x+1\right)^2}{x+1}=3\left(x+1\right)=3x+3\)

\(c,x=1\Rightarrow P=3.1+3=6\)

9 tháng 5 2016

a) \(\frac{2x^2-4x+8}{x^3+8}\Rightarrow\) ĐKXĐ: \(x^3+8\ne0 \Leftrightarrow x^3\ne-8 \Leftrightarrow x\ne-2 \)

b) \(\frac{2x^2-4x+8}{x^3+8}=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{2}{x+2}\)

c) \(\frac{2}{x+2}\Rightarrow f\left(2\right)=\frac{2}{2+2}=\frac{1}{2}\) 

d) \(\frac{2}{x+2}=2\)
\(\Leftrightarrow x+2=1\)
\(\Leftrightarrow x=-1\)

 

18 tháng 12 2018

uum, mik nghĩ phần C chỗ x+2=1 thì phải gt tại sao x+2=1 thì đúng hơn

21 tháng 12 2018

\(1.a,Q=\frac{x+3}{2x+1}-\frac{x-7}{2x+1}=\frac{x+3}{2x+1}+\frac{7-x}{2x+1}\)

            \(=\frac{x+3+7-x}{2x+1}=\frac{10}{2x+1}\)

\(b,\) Vì \(x\inℤ\Rightarrow\left(2x+1\right)\inℤ\)

Q nhận giá trị nguyên \(\Leftrightarrow\frac{10}{2x+1}\) nhận giá trị nguyên

                                \(\Leftrightarrow10⋮2x+1\)

                                \(\Leftrightarrow2x+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

Mà \(\left(2x+1\right):2\) dư 1 nên \(2x+1=\pm1;\pm5\)

\(\Rightarrow x=-1;0;-3;2\)

Vậy.......................

30 tháng 10 2023

a) ĐKXĐ: 

\(x^2-1\ne0\Leftrightarrow x\ne\pm1\)

b) \(A=\dfrac{x^2-2x+1}{x^2-1}\)

\(A=\dfrac{x^2-2\cdot x\cdot1+1^2}{x^2-1^2}\)

\(A=\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\)

\(A=\dfrac{x-1}{x+1}\)

c) Thay x = 3 vào A ta có:

\(A=\dfrac{3-1}{3+1}=\dfrac{2}{4}=\dfrac{1}{2}\)

30 tháng 10 2023

a) ĐKXĐ: 

\(9x^2-y^2\ne0\Leftrightarrow\left(3x\right)^2-y^2\ne0\Leftrightarrow\left(3x-y\right)\left(3x+y\right)\ne0\)

\(\Leftrightarrow3x\ne\pm y\) 

b) \(B=\dfrac{6x-2y}{9x^2-y^2}\)

\(B=\dfrac{2\cdot3x-2y}{\left(3x\right)^2-y^2}\)

\(B=\dfrac{2\left(3x-y\right)}{\left(3x+y\right)\left(3x-y\right)}\)

\(B=\dfrac{2}{3x+y}\)

Thay x = 1 và \(y=\dfrac{1}{2}\) và B ta có:

\(B=\dfrac{2}{3\cdot1+\dfrac{1}{2}}=\dfrac{2}{3+\dfrac{1}{2}}=\dfrac{2}{\dfrac{7}{2}}=\dfrac{4}{7}\)

13 tháng 4 2019

bài1   A=\(\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

=\(\left(-\frac{x-3\cdot\left(x+3\right)^2}{\left(x+3\right)^2\cdot\left(x-3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

=\(-\frac{x}{x+3}\cdot\frac{x+3}{3x^2}=\frac{-1}{3x}\)

b)  thế \(x=-\frac{1}{2}\)vào biểu thức A

 \(-\frac{1}{3\cdot\left(-\frac{1}{2}\right)}=\frac{2}{3}\)

c)  A=\(-\frac{1}{3x}< 0\)

VÌ (-1) <0  nên  3x>0

                        x >0

10 tháng 3 2020

a, \(ĐKXĐ:x^3+8\ne0\Leftrightarrow x\ne-2\)

b, \(C=\frac{2x^2-4x+8}{x^3+8}=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{2}{x+2}\)

c, \(\left|2x+1\right|=3\Rightarrow\orbr{\begin{cases}2x+1=3\\2x+1=-3\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=-2\left(ktm\right)\end{cases}\Rightarrow x=1}\)

thay vào ta được : \(C=\frac{2}{1+2}=\frac{2}{3}\)

\(\frac{x}{x+2}=2\Leftrightarrow x=2x+4\)

\(\Leftrightarrow x=-4\left(tm\right)\)

24 tháng 12 2021

a: ĐKXĐ: \(x\in\left\{1;-1\right\}\)

b: \(A=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}\)

24 tháng 12 2021

\(a,ĐK:x\ne\pm1\\ b,A=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}\\ c,x=-2\Leftrightarrow A=\dfrac{-2+1}{-2-1}=\dfrac{-1}{-3}=\dfrac{1}{3}\)