K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2021

a: ĐKXĐ: \(x\in\left\{1;-1\right\}\)

b: \(A=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}\)

24 tháng 12 2021

\(a,ĐK:x\ne\pm1\\ b,A=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}\\ c,x=-2\Leftrightarrow A=\dfrac{-2+1}{-2-1}=\dfrac{-1}{-3}=\dfrac{1}{3}\)

9 tháng 5 2016

a) \(\frac{2x^2-4x+8}{x^3+8}\Rightarrow\) ĐKXĐ: \(x^3+8\ne0 \Leftrightarrow x^3\ne-8 \Leftrightarrow x\ne-2 \)

b) \(\frac{2x^2-4x+8}{x^3+8}=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{2}{x+2}\)

c) \(\frac{2}{x+2}\Rightarrow f\left(2\right)=\frac{2}{2+2}=\frac{1}{2}\) 

d) \(\frac{2}{x+2}=2\)
\(\Leftrightarrow x+2=1\)
\(\Leftrightarrow x=-1\)

 

18 tháng 12 2018

uum, mik nghĩ phần C chỗ x+2=1 thì phải gt tại sao x+2=1 thì đúng hơn

13 tháng 8 2020

a) Với giá trị của x thì phân thức được xác định là : \(x^2-1\ne0\)

=> \(x^2\ne\pm1\)

b) Rút gọn A : \(A=\frac{x^2+2x+1}{x^2-1}=\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{x+1}{x-1}\)

c) Tại x = -2 thì \(A=\frac{\left(-2\right)+1}{\left(-2\right)-1}=\frac{-1}{-3}=\frac{1}{3}\)

d) Ta có : \(A=\frac{x^2+2x+1}{x^2-1}=\frac{x+1}{x-1}=\frac{x-1+2}{x-1}=1+\frac{2}{x-1}\)

=> \(2⋮x-1\)=> x - 1 \(\in\)Ư(2) = { \(\pm1;\pm2\)}

+) x - 1 = 1 => x = 2 ; x - 1 = -1 => x = 0

+) x - 1 = 2 => x = 3 ; x - 1 = -2 => x = -1

Vậy : ....

13 tháng 8 2020

a) Phân thức xác định 

\(\Leftrightarrow x^2-1\ne0\)

\(\Leftrightarrow x\ne\pm1\)

Vậy với \(x\ne\pm1\)thì giá trị của phân thức đã cho xác định.

b) \(A=\frac{x^2+2x+1}{x^2-1}\)

\(\Leftrightarrow A=\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow A=\frac{x+1}{x-1}\)

c) x = -2 ( thỏa mãn đkxđ )

Vậy \(A=\frac{-2+1}{-2-1}=\frac{-1}{-3}=\frac{1}{3}\)

d)  A có giá trị nguyên 

\(\Leftrightarrow\frac{x+1}{x-1}\)có giá trị nguyên 

\(\Leftrightarrow\frac{x+1}{x-1}=\frac{x-1+2}{x-1}=1+\frac{2}{x-1}\)có giá trị nguyên

\(\Leftrightarrow x-1\inƯ\left(2\right)\)

\(\Leftrightarrow x=\left\{2;3;0\right\}\)

a. \(x\ne5\) là ĐKXĐ của biểu thức P

b. P =\(\dfrac{\left(x-5\right)^2}{x-5}\)=\(x-5\)

c. P = -1 <=> x-5 =-1 <=> x=4

10 tháng 3 2020

a, \(ĐKXĐ:x^3+8\ne0\Leftrightarrow x\ne-2\)

b, \(C=\frac{2x^2-4x+8}{x^3+8}=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{2}{x+2}\)

c, \(\left|2x+1\right|=3\Rightarrow\orbr{\begin{cases}2x+1=3\\2x+1=-3\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=-2\left(ktm\right)\end{cases}\Rightarrow x=1}\)

thay vào ta được : \(C=\frac{2}{1+2}=\frac{2}{3}\)

\(\frac{x}{x+2}=2\Leftrightarrow x=2x+4\)

\(\Leftrightarrow x=-4\left(tm\right)\)

21 tháng 12 2018

1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)

                                                      \(\left(x+2\right)\ne0\Rightarrow x\ne-2\)

                                                      \(\left(x-2\right)\ne0\Rightarrow x\ne2\)

                         Vậy để biểu thức xác định thì : \(x\ne\pm2\)

b) để C=0 thì ....

21 tháng 12 2018

1, c , bn Nguyễn Hữu Triết chưa lm xong 

ta có : \(/x-5/=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)

thay x = 7  vào biểu thứcC

\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...

thay x = 3 vào C 

\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)

=> ko tìm đc giá trị C tại x = 3

27 tháng 1 2017

a, ĐKXĐ : \(x^2+2x+1\ne0=>\left(x+1\right)^2\ne0\)

=> \(x\ne-1\)

b, Ta có \(B=\frac{x^2+2x+1}{x^2-1}\Leftrightarrow\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{x+1}{x-1}\)

c, Đề P =0

<=> \(\left(x+1\right)^2=0\)

=> x=-1

27 tháng 1 2017

a/ x khác cộng trừ 1

b/ B= 1/(x-1)

c/ vô nghiệm

22 tháng 4 2016

bài 1:

a, x^2-2x = x*(x-2)

b, x^2 -xy+x-y = x*(x-y) + (x-y)

                     = (x-y) (x+1)

22 tháng 4 2016

bài 2:

a, P xác định khi x^2 - 9 khác 0 suy ra (x-3)(x+3) khác 0 hay x khác 3 và -3

b, P= x^2 + 6x +9 / x^2 -9 

      = (x+3)^2 / (x-3)(x+3)

      = x+3/x-3

c, P=0 <=> x+3/x-3 =0 <=> x+3=0 <=> x=-3 (loại vì trái với điều khiện xác định)

Vậy P=0 thì không tìm đc x thỏa mãn