Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=(6n+4-5):(3n+2)=2-5:(3n+2)
a) để M nguyên thì (3n+2) phải là ước của 5
=> 3n+2={-5; -1; 1; 5}
+/ 3n+2=-5 => n=-7/3 (loại)
+/ 3n+2=-1 => n=-1; M=7
+/ 3n+2=1 => n=-1/3 loại
+/ 3n+2=5 => n=1; M=-3
Đs: n={-1; 1}
b) để M đạt nhỏ nhất thì 5:(3n+2) là lớn nhất, hay 3n+2 đạt giá trị nhỏ nhất => n=0
Mmin=2-5/2=-1/2
\(b)\) Ta có :
\(A=\frac{6n-1}{3n+2}=2-\frac{5}{3n+2}\) ( câu a mình đã phân tích rồi nên khỏi phân tích lại )
Để A đạt GTNN thì \(\frac{5}{3n+2}\) phải đạt GTLN hay nói cách khác \(3n+2>0\) và đạt GTNN
\(\Rightarrow\)\(3n+2=1\)
\(\Rightarrow\)\(3n=-1\)
\(\Rightarrow\)\(n=\frac{-1}{3}\) ( loại vì \(n\inℤ\) )
\(\Rightarrow\)\(3n+2=2\)
\(\Rightarrow\)\(3n=0\)
\(\Rightarrow\)\(n=0\)
Suy ra : \(A=2-\frac{5}{3n+2}=2-\frac{5}{3.0+2}=2-\frac{5}{2}=\frac{-1}{2}\)
Vậy \(A_{min}=\frac{-1}{3}\) khi \(n=0\)
Chúc bạn học tốt ~
\(a)\) Ta có :
\(\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{6n+4}{3n+2}-\frac{5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)
Để \(A\inℤ\) thì \(\frac{5}{3n+2}\inℤ\)\(\Rightarrow\)\(5⋮\left(3n+2\right)\)\(\Rightarrow\)\(\left(3n+2\right)\inƯ\left(5\right)\)
Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)
Suy ra :
\(3n+2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(n\) | \(\frac{-1}{3}\) | \(-1\) | \(1\) | \(\frac{-7}{3}\) |
Mà \(n\inℤ\) nên \(n\in\left\{-1;1\right\}\)
Vậy \(n=1\) hoặc \(n=-1\)
Chúc bạn học tốt ~
để m là số nguyên thì 6n-1 phải chia hết cho 3n+2. tả cô: 6n-1=2.(3n+2) -5. mà 2 nhân với 3n+2 chia hết cho 3n+2. nên suy ra -5 chia hết cho 3n+2.suy ra tiếp 3n+2 thuộc tập hợp Ư(-5).mã U(-5)=(-5;5;1;-1).nên suy ra 3n+2 thuộc tập hợp trên.suy ra 3n =(-7;3;-3;-1).suy ra n=(-7/3;1;-1;-1/3)
Để A có giá trị nhỏ nhất thì 3n+2 phải lớn nhất.
Để 3n+2 lớn nhất thì 3n lớn nhất => n phải lớn nhất.
Vì n lớn nhất => không tìm được n .
\(B=\frac{6n-5}{3n+1}\inℤ\)
=> 6n - 5 ⋮ 3n + 1
=> 6n + 2 - 7 ⋮ 3n + 1
=> 3(3n + 1) - 7 ⋮ 3n + 1
=> 7 ⋮ 3n + 1
=> 3n + 1 thuộc Ư(7)
=> 3n + 1 thuộc {-1; 1; -7; 7}
=> 3n thuộc {-2; 0; -8; 6}
=> n thuộc {0; 2} vì n thuộc Z
a) Để \(B\inℤ\)
\(\Rightarrow\left(6n-5\right)⋮\left(3n+1\right)\)
\(\Rightarrow\left(6n+2-7\right)⋮\left(3n+1\right)\)
\(\Rightarrow2.\left(3n+1\right)-7⋮\left(3n+1\right)\)
Vì \(2.\left(3n+1\right)⋮\left(3n+1\right)\)
nên \(-7⋮3n+1\)
\(\Rightarrow3n+1\inƯ_{\left(-7\right)}\)
\(\Rightarrow3n+1\in\left\{1;-1;7;-7\right\}\)
Lập bảng xét 4 trường hợp ta có :
\(3n+1\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(n\) | \(0\) | \(-\frac{2}{3}\) | \(2\) | \(-\frac{8}{3}\) |
Vậy \(n\in\left\{0;2\right\}\)
A=\(\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}\)=\(\frac{6n+4}{3n+2}-\frac{5}{3n+2}\)= 2-\(\frac{5}{3n+2}\)
Để A đạt GTNN thì \(\frac{5}{3n+2}\)đạt GTLN \(\Leftrightarrow\)3n+2 <0 và đạt GTLN
=>3n+2 =-1 => 3n=-3=>n=-1khi đó A= 7
Vậy Amin=7 khi x=-1
Ta có :
\(A=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{6n+4}{3n+2}-\frac{5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)
Để \(A\) đạt GTNN thì \(\frac{5}{3n+2}\) phải đạt GTLN suy ra \(3n+2>0\) và đạt GTNN
\(\Rightarrow\)\(3n+2=1\)
\(\Leftrightarrow\)\(3n=-1\)
\(\Leftrightarrow\)\(n=\frac{-1}{3}\)
\(\Rightarrow\)\(A=\frac{6n-1}{3n+2}=\frac{\frac{6.\left(-1\right)}{3}-1}{\frac{3.\left(-1\right)}{3}+2}=\frac{-2-1}{-1+2}=\frac{-3}{1}=-3\)
Vậy \(A_{min}=-3\) khi \(x=\frac{-1}{3}\)
Hai bạn Misaki và Ngọc Ánh lập luận sai sai ở đoạn 3n+2 nhé
Bài này mình làm để bạn tham khảo , sai xót bỏ qua nhé
Ta có \(M=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{2.\left(3n+2\right)-5}{3n+2}=2-\frac{5}{3n+2}\)
Để M có giá trị nhỏ nhất thì \(\frac{5}{3n+2}\)có giá trị lớn nhất
Khi đó 3n +2 có giá trị nhỏ nhất mà \(n\in Z\)nên 3n + 2 nhỏ nhất khi và chỉ khi \(3n+2=2\)
\(\Rightarrow n=0\)Nên \(M=\frac{6.0-1}{3.0+2}=-\frac{1}{2}\)
Vậy giá trị nhỏ nhất của M = -1/2 khi và chỉ khi n = 0
Ta có: \(A=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=2-\frac{5}{3n-2}.\)
Để A có giá trị nhỏ nhất ( n thuộc N ) thì \(\frac{5}{3n+2}\)đạt giá trị lớn nhất.
=> 3n + 2 đạt giá trị tự nhiên nhỏ nhất
=> 3n đạt giá trị tự nhiên nhỏ nhất
=> n là số tự nhiên nhỏ nhất
=> n = 0
học tốt ~~~